A358268 a(n) is the least number k > 0 such that the binary weight of k^n is n times the binary weight of k.
1, 21, 5, 21, 17, 17, 9, 113, 17, 49, 665, 37, 149, 17, 275, 163, 33, 41, 97, 67, 141, 67, 135, 197, 49, 267, 81, 81, 69, 779, 1163, 69, 325, 49, 587, 837, 281, 197, 293, 49, 147, 677, 67, 651, 647, 67, 793, 277, 353, 49, 1233, 1177, 165, 775, 721, 353, 817, 69, 647, 709, 209, 1233, 69, 67, 263
Offset: 1
Examples
a(3) = 5 because 5 = 101_2 and 5^3 = 1111101_2 so A000120(5) = 2, A000120(5^3) = 6 and 6 = 3*2.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..1004 from Robert Israel)
Programs
-
Maple
f:= proc(n) local k; for k from 1 by 2 do if convert(convert(k^n,base,2),`+`) = n*convert(convert(k,base,2),`+`) then return k fi od end proc: map(f, [$1..50]);
-
Mathematica
a[n_] := Module[{k = 1}, While[Divide @@ DigitCount[k^{n, 1}, 2, 1] != n, k += 2]; k]; Array[a, 65] (* Amiram Eldar, Nov 07 2022 *)
-
PARI
a(n) = my(k=1); while (hammingweight(k^n) != n*hammingweight(k), k++); k; \\ Michel Marcus, Nov 07 2022
-
Python
def a(n): k = 1 while bin(k**n).count("1") != n*bin(k).count("1"): k += 2 return k print([a(n) for n in range(1, 66)]) # Michael S. Branicky, Nov 06 2022
-
Python
from itertools import count def A358268(n): return next(filter(lambda k:k.bit_count()*n==(k**n).bit_count(),count(1,2))) # Chai Wah Wu, Nov 07 2022
Comments