A358298 Array read by antidiagonals: T(n,k) (n>=0, k>=0) = number of lines defining the Farey diagram Farey(n,k) of order (n,k).
2, 3, 3, 4, 6, 4, 6, 11, 11, 6, 8, 19, 20, 19, 8, 12, 29, 36, 36, 29, 12, 14, 43, 52, 60, 52, 43, 14, 20, 57, 78, 88, 88, 78, 57, 20, 24, 77, 100, 128, 124, 128, 100, 77, 24, 30, 97, 136, 162, 180, 180, 162, 136, 97, 30, 34, 121, 166, 216, 224, 252, 224, 216, 166, 121, 34
Offset: 0
Examples
The full array T(n,k), n >= 0, k>= 0, begins: 2, 3, 4, 6, 8, 12, 14, 20, 24, 30, 34, 44, 48, 60, ... 3, 6, 11, 19, 29, 43, 57, 77, 97, 121, 145, 177, 205, ... 4, 11, 20, 36, 52, 78, 100, 136, 166, 210, 246, 302, ... 6, 19, 36, 60, 88, 128, 162, 216, 266, 326, 386, 468, ... 8, 29, 52, 88, 124, 180, 224, 298, 360, 444, 518, 628, ... 12, 43, 78, 128, 180, 252, 316, 412, 498, 608, 706, ... 14, 57, 100, 162, 224, 316, 388, 508, 608, 738, 852, ... ...
Links
- Alain Daurat, M. Tajine, and M. Zouaoui, About the frequencies of some patterns in digital planes. Application to area estimators. Computers & Graphics. 33.1 (2009), 11-20.
- Daniel Khoshnoudirad, Farey lines defining Farey diagrams and application to some discrete structures, Applicable Analysis and Discrete Mathematics, 9 (2015), 73-84; doi:10.2298/AADM150219008K. See Theorem 1, |DF(m,n)|.
Crossrefs
Programs
-
Maple
A005728 := proc(n) 1+add(numtheory[phi](i), i=1..n) ; end proc: # called F_n in the paper Amn:=proc(m,n) local a,i,j; # A331781 or equally A333295. Diagonal is A018805. a:=0; for i from 1 to m do for j from 1 to n do if igcd(i,j)=1 then a:=a+1; fi; od: od: a; end; # The present sequence is: Dmn:=proc(m,n) local d,t1,u,v,a; global A005728, Amn; a:=A005728(m)+A005728(n); t1:=0; for u from 1 to m do for v from 1 to n do d:=igcd(u,v); if d>=1 then t1:=t1 + (u+v)*numtheory[phi](d)/d; fi; od: od: a+2*t1-2*Amn(m,n); end; for m from 1 to 8 do lprint([seq(Dmn(m,n),n=1..20)]); od:
-
Mathematica
A005728[n_] := 1 + Sum[EulerPhi[i], {i, 1, n}]; Amn[m_, n_] := Module[{a, i, j}, a = 0; For[i = 1, i <= m, i++, For[j = 1, j <= n, j++, If[GCD[i, j] == 1, a = a + 1]]]; a]; Dmn[m_, n_] := Module[{d, t1, u, v, a}, a = A005728[m] + A005728[n]; t1 = 0; For[u = 1, u <= m, u++, For[v = 1, v <= n, v++, d = GCD[u, v]; If[d >= 1 , t1 = t1 + (u + v)* EulerPhi[d]/d]]]; a + 2*t1 - 2*Amn[m, n]]; Table[Dmn[m - n, n], {m, 0, 10}, {n, 0, m}] // Flatten (* Jean-François Alcover, Apr 03 2023, after Maple code *)
Comments