Original entry on oeis.org
3, 6, 11, 19, 29, 43, 57, 77, 97, 121, 145, 177, 205, 243, 277, 315, 355, 405, 447, 503, 551, 605, 659, 727, 783, 853, 917, 989, 1057, 1143, 1211, 1303, 1383, 1469, 1553, 1647, 1731, 1841, 1935, 2037, 2133, 2255, 2351, 2479, 2587, 2701, 2815, 2955, 3067, 3207, 3327, 3461
Offset: 0
Original entry on oeis.org
2, 6, 20, 60, 124, 252, 388, 652, 924, 1332, 1748, 2428, 2988, 3948, 4788, 5908, 7028, 8692, 9964, 12052, 13748, 16004, 18124, 21204, 23476, 26996, 29972, 33788, 37196, 42124, 45548, 51188, 55732, 61412, 66532, 73348, 78484, 86548, 92956, 100924, 107772, 117692, 124556, 135476, 144036
Offset: 0
-
A005728[n_] := 1 + Sum[EulerPhi[i], {i, 1, n}];
Amn[m_, n_] := Sum[If[GCD[i, j] == 1, 1, 0], {i, 1, m}, {j, 1, n}];
Dmn[m_, n_] := A005728[m] + A005728[n] + 2 Sum[d = GCD[u, v]; If[d >= 1, (u+v)*EulerPhi[d]/d, 0], {u, 1, m}, {v, 1, n}] - 2*Amn[m, n];
Table[Dmn[n, n], {n, 0, 44}] (* Jean-François Alcover, Apr 18 2023, after Maple code in A358298 *)
A358882
The number of regions in a Farey diagram of order (n,n).
Original entry on oeis.org
4, 56, 504, 2024, 8064, 18200, 50736, 99248, 202688, 343256, 657904, 983008, 1708672, 2485968, 3755184, 5289944, 8069736, 10539792, 15387320, 19913840
Offset: 1
- Alain Daurat, M. Tajine, M. Zouaoui, About the frequencies of some patterns in digital planes. Application to area estimators. Computers & Graphics. 33.1 (2009), 11-20.
- Daniel Khoshnoudirad, Farey lines defining Farey diagrams and application to some discrete structures. Applicable Analysis and Discrete Mathematics. 9 (2015), 73-84.
- Scott R. Shannon, Image for n = 1.
- Scott R. Shannon, Image for n = 2.
- Scott R. Shannon, Image for n = 3.
- Scott R. Shannon, Image for n = 4.
- Scott R. Shannon, Image for n = 5.
- Scott R. Shannon, Image for n = 6.
- Scott R. Shannon, Image for n = 7.
- Scott R. Shannon, Image for n = 8.
- Wikipedia, Farey sequence.
See
A358298 for definition of Farey diagram Farey(m,n).
A358886
Number of regions formed inside a square with edge length 1 by the straight line segments mutually connecting all vertices and points that divide the sides into segments with lengths equal to the Farey series of order n = A006842(n,k)/A006843(n,k), k = 1..A005728(n).
Original entry on oeis.org
4, 56, 1040, 6064, 53104, 115496, 629920, 1457744, 3952264, 6835568
Offset: 1
A358889
Table read by rows: T(n,k) = number of k-gons, k >= 3, formed inside a square with edge length 1 by the straight line segments mutually connecting all vertices and points that divide the sides into segments with lengths equal to the Farey series of order n = A006842(n,m)/A006843(n,m), m = 1..A005728(n).
Original entry on oeis.org
4, 48, 8, 712, 304, 24, 3368, 2400, 280, 16, 27424, 20360, 4784, 504, 32, 56000, 47088, 10912, 1400, 88, 8, 292424, 255608, 69368, 11504, 960, 56, 658800, 590208, 175856, 30160, 2496, 200, 24, 1748112, 1593912, 506496, 93584, 9616, 520, 24, 2981448, 2778456, 890368, 166912, 17192, 1144, 48
Offset: 1
The table begins:
4;
48, 8;
712, 304, 24;
3368, 2400, 280, 16;
27424, 20360, 4784, 504, 32;
56000, 47088, 10912, 1400, 88, 8;
292424, 255608, 69368, 11504, 960, 56;
658800, 590208, 175856, 30160, 2496, 200, 24;
1748112, 1593912, 506496, 93584, 9616, 520, 24;
2981448, 2778456, 890368, 166912, 17192, 1144, 48;
.
.
A358885
Table read by rows: T(n,k) = the number of regions with k sides, k >= 3, in a Farey diagram of order (n,n).
Original entry on oeis.org
4, 48, 8, 400, 104, 1568, 456, 6216, 1848, 13944, 4256, 38760, 11976, 75768, 23480, 154440, 48248, 261072, 82184, 500464, 157440, 747480, 235528, 1298584, 410088, 1890184, 595784, 2853416, 901768, 4015552, 1274392, 6127632, 1942104, 8002552, 2537240, 11683880, 3703440, 15123800, 4790040
Offset: 1
The table begins:
4;
48, 8;
400, 104;
1568, 456;
6216, 1848;
13944, 4256;
38760, 11976;
75768, 23480;
154440, 48248;
261072, 82184;
500464, 157440;
747480, 235528;
1298584, 410088;
1890184, 595784;
2853416, 901768;
4015552, 1274392;
6127632, 1942104;
8002552, 2537240;
11683880, 3703440;
15123800, 4790040;
.
.
See
A358298 for definition of Farey diagram Farey(m,n).
A358307
Main diagonal of array in A358304, divided by 2.
Original entry on oeis.org
0, 1, 5, 16, 33, 67, 102, 171, 241, 346, 452, 627, 769, 1015, 1228, 1512, 1796, 2220, 2541, 3072, 3500, 4070, 4605, 5386, 5958, 6848, 7598, 8561, 9419, 10665, 11525, 12950, 14094, 15524, 16812, 18528, 19818, 21852, 23463, 25467, 27187, 29687, 31409, 34160, 36310, 38890, 41255, 44544, 46840, 50347, 53037, 56477, 59489
Offset: 0
A358887
Number of vertices formed inside a square with edge length 1 by the straight line segments mutually connecting all vertices and points that divide the sides into segments with lengths equal to the Farey series of order n = A006842(n,k)/A006843(n,k), k = 1..A005728(n).
Original entry on oeis.org
5, 37, 705, 4549, 42357, 94525, 531485, 1250681, 3440621, 5985201
Offset: 1
A358888
Number of edges formed inside a square with edge length 1 by the straight line segments mutually connecting all vertices and points that divide the sides into segments with lengths equal to the Farey series of order n = A006842(n,k)/A006843(n,k), k = 1..A005728(n).
Original entry on oeis.org
8, 92, 1744, 10612, 95460, 210020, 1161404, 2708424, 7392884, 12820768
Offset: 1
A358883
The number of vertices in a Farey diagram of order (n,n).
Original entry on oeis.org
5, 37, 313, 1253, 4977, 11253, 31393, 61409, 125525, 212785, 407757, 609361, 1059497, 1541005, 2328621, 3282329, 5006113, 6538721, 9545621, 12352197
Offset: 1
- Alain Daurat et al., About the frequencies of some patterns in digital planes. Application to area estimators. Computers & graphics. 33.1 (2009), 11-20.
- Daniel Khoshnoudirad, Farey lines defining Farey diagrams and application to some discrete structures. Applicable Analysis and Discrete Mathematics. 9 (2015), 73-84.
- Scott R. Shannon, Image for n = 1.
- Scott R. Shannon, Image for n = 2.
- Scott R. Shannon, Image for n = 3.
- Scott R. Shannon, Image for n = 4.
- Scott R. Shannon, Image for n = 5.
- Wikipedia, Farey sequence.
See
A358298 for definition of Farey diagram Farey(m,n).
Showing 1-10 of 17 results.
Comments