A358882
The number of regions in a Farey diagram of order (n,n).
Original entry on oeis.org
4, 56, 504, 2024, 8064, 18200, 50736, 99248, 202688, 343256, 657904, 983008, 1708672, 2485968, 3755184, 5289944, 8069736, 10539792, 15387320, 19913840
Offset: 1
- Alain Daurat, M. Tajine, M. Zouaoui, About the frequencies of some patterns in digital planes. Application to area estimators. Computers & Graphics. 33.1 (2009), 11-20.
- Daniel Khoshnoudirad, Farey lines defining Farey diagrams and application to some discrete structures. Applicable Analysis and Discrete Mathematics. 9 (2015), 73-84.
- Scott R. Shannon, Image for n = 1.
- Scott R. Shannon, Image for n = 2.
- Scott R. Shannon, Image for n = 3.
- Scott R. Shannon, Image for n = 4.
- Scott R. Shannon, Image for n = 5.
- Scott R. Shannon, Image for n = 6.
- Scott R. Shannon, Image for n = 7.
- Scott R. Shannon, Image for n = 8.
- Wikipedia, Farey sequence.
See
A358298 for definition of Farey diagram Farey(m,n).
A358886
Number of regions formed inside a square with edge length 1 by the straight line segments mutually connecting all vertices and points that divide the sides into segments with lengths equal to the Farey series of order n = A006842(n,k)/A006843(n,k), k = 1..A005728(n).
Original entry on oeis.org
4, 56, 1040, 6064, 53104, 115496, 629920, 1457744, 3952264, 6835568
Offset: 1
A358889
Table read by rows: T(n,k) = number of k-gons, k >= 3, formed inside a square with edge length 1 by the straight line segments mutually connecting all vertices and points that divide the sides into segments with lengths equal to the Farey series of order n = A006842(n,m)/A006843(n,m), m = 1..A005728(n).
Original entry on oeis.org
4, 48, 8, 712, 304, 24, 3368, 2400, 280, 16, 27424, 20360, 4784, 504, 32, 56000, 47088, 10912, 1400, 88, 8, 292424, 255608, 69368, 11504, 960, 56, 658800, 590208, 175856, 30160, 2496, 200, 24, 1748112, 1593912, 506496, 93584, 9616, 520, 24, 2981448, 2778456, 890368, 166912, 17192, 1144, 48
Offset: 1
The table begins:
4;
48, 8;
712, 304, 24;
3368, 2400, 280, 16;
27424, 20360, 4784, 504, 32;
56000, 47088, 10912, 1400, 88, 8;
292424, 255608, 69368, 11504, 960, 56;
658800, 590208, 175856, 30160, 2496, 200, 24;
1748112, 1593912, 506496, 93584, 9616, 520, 24;
2981448, 2778456, 890368, 166912, 17192, 1144, 48;
.
.
A358885
Table read by rows: T(n,k) = the number of regions with k sides, k >= 3, in a Farey diagram of order (n,n).
Original entry on oeis.org
4, 48, 8, 400, 104, 1568, 456, 6216, 1848, 13944, 4256, 38760, 11976, 75768, 23480, 154440, 48248, 261072, 82184, 500464, 157440, 747480, 235528, 1298584, 410088, 1890184, 595784, 2853416, 901768, 4015552, 1274392, 6127632, 1942104, 8002552, 2537240, 11683880, 3703440, 15123800, 4790040
Offset: 1
The table begins:
4;
48, 8;
400, 104;
1568, 456;
6216, 1848;
13944, 4256;
38760, 11976;
75768, 23480;
154440, 48248;
261072, 82184;
500464, 157440;
747480, 235528;
1298584, 410088;
1890184, 595784;
2853416, 901768;
4015552, 1274392;
6127632, 1942104;
8002552, 2537240;
11683880, 3703440;
15123800, 4790040;
.
.
See
A358298 for definition of Farey diagram Farey(m,n).
A358298
Array read by antidiagonals: T(n,k) (n>=0, k>=0) = number of lines defining the Farey diagram Farey(n,k) of order (n,k).
Original entry on oeis.org
2, 3, 3, 4, 6, 4, 6, 11, 11, 6, 8, 19, 20, 19, 8, 12, 29, 36, 36, 29, 12, 14, 43, 52, 60, 52, 43, 14, 20, 57, 78, 88, 88, 78, 57, 20, 24, 77, 100, 128, 124, 128, 100, 77, 24, 30, 97, 136, 162, 180, 180, 162, 136, 97, 30, 34, 121, 166, 216, 224, 252, 224, 216, 166, 121, 34
Offset: 0
The full array T(n,k), n >= 0, k>= 0, begins:
2, 3, 4, 6, 8, 12, 14, 20, 24, 30, 34, 44, 48, 60, ...
3, 6, 11, 19, 29, 43, 57, 77, 97, 121, 145, 177, 205, ...
4, 11, 20, 36, 52, 78, 100, 136, 166, 210, 246, 302, ...
6, 19, 36, 60, 88, 128, 162, 216, 266, 326, 386, 468, ...
8, 29, 52, 88, 124, 180, 224, 298, 360, 444, 518, 628, ...
12, 43, 78, 128, 180, 252, 316, 412, 498, 608, 706, ...
14, 57, 100, 162, 224, 316, 388, 508, 608, 738, 852, ...
...
- Alain Daurat, M. Tajine, and M. Zouaoui, About the frequencies of some patterns in digital planes. Application to area estimators. Computers & Graphics. 33.1 (2009), 11-20.
- Daniel Khoshnoudirad, Farey lines defining Farey diagrams and application to some discrete structures, Applicable Analysis and Discrete Mathematics, 9 (2015), 73-84; doi:10.2298/AADM150219008K. See Theorem 1, |DF(m,n)|.
-
A005728 := proc(n) 1+add(numtheory[phi](i), i=1..n) ; end proc: # called F_n in the paper
Amn:=proc(m,n) local a,i,j; # A331781 or equally A333295. Diagonal is A018805.
a:=0; for i from 1 to m do for j from 1 to n do
if igcd(i,j)=1 then a:=a+1; fi; od: od: a; end;
# The present sequence is:
Dmn:=proc(m,n) local d,t1,u,v,a; global A005728, Amn;
a:=A005728(m)+A005728(n);
t1:=0; for u from 1 to m do for v from 1 to n do
d:=igcd(u,v); if d>=1 then t1:=t1 + (u+v)*numtheory[phi](d)/d; fi; od: od:
a+2*t1-2*Amn(m,n); end;
for m from 1 to 8 do lprint([seq(Dmn(m,n),n=1..20)]); od:
-
A005728[n_] := 1 + Sum[EulerPhi[i], {i, 1, n}];
Amn[m_, n_] := Module[{a, i, j}, a = 0; For[i = 1, i <= m, i++, For[j = 1, j <= n, j++, If[GCD[i, j] == 1, a = a + 1]]]; a];
Dmn[m_, n_] := Module[{d, t1, u, v, a}, a = A005728[m] + A005728[n]; t1 = 0; For[u = 1, u <= m, u++, For[v = 1, v <= n, v++, d = GCD[u, v]; If[d >= 1 , t1 = t1 + (u + v)* EulerPhi[d]/d]]]; a + 2*t1 - 2*Amn[m, n]];
Table[Dmn[m - n, n], {m, 0, 10}, {n, 0, m}] // Flatten (* Jean-François Alcover, Apr 03 2023, after Maple code *)
A358887
Number of vertices formed inside a square with edge length 1 by the straight line segments mutually connecting all vertices and points that divide the sides into segments with lengths equal to the Farey series of order n = A006842(n,k)/A006843(n,k), k = 1..A005728(n).
Original entry on oeis.org
5, 37, 705, 4549, 42357, 94525, 531485, 1250681, 3440621, 5985201
Offset: 1
A358888
Number of edges formed inside a square with edge length 1 by the straight line segments mutually connecting all vertices and points that divide the sides into segments with lengths equal to the Farey series of order n = A006842(n,k)/A006843(n,k), k = 1..A005728(n).
Original entry on oeis.org
8, 92, 1744, 10612, 95460, 210020, 1161404, 2708424, 7392884, 12820768
Offset: 1
A358883
The number of vertices in a Farey diagram of order (n,n).
Original entry on oeis.org
5, 37, 313, 1253, 4977, 11253, 31393, 61409, 125525, 212785, 407757, 609361, 1059497, 1541005, 2328621, 3282329, 5006113, 6538721, 9545621, 12352197
Offset: 1
- Alain Daurat et al., About the frequencies of some patterns in digital planes. Application to area estimators. Computers & graphics. 33.1 (2009), 11-20.
- Daniel Khoshnoudirad, Farey lines defining Farey diagrams and application to some discrete structures. Applicable Analysis and Discrete Mathematics. 9 (2015), 73-84.
- Scott R. Shannon, Image for n = 1.
- Scott R. Shannon, Image for n = 2.
- Scott R. Shannon, Image for n = 3.
- Scott R. Shannon, Image for n = 4.
- Scott R. Shannon, Image for n = 5.
- Wikipedia, Farey sequence.
See
A358298 for definition of Farey diagram Farey(m,n).
A358884
The number of edges in a Farey diagram of order (n,n).
Original entry on oeis.org
8, 92, 816, 3276, 13040, 29452, 82128, 160656, 328212, 556040, 1065660, 1592368, 2768168, 4026972, 6083804, 8572272, 13075848, 17078512, 24932940, 32266036
Offset: 1
See
A358298 for definition of Farey diagram Farey(m,n).
A358304
Array read by antidiagonals: T(n,k) (n>=0, k>=0) = number of decreasing lines defining the Farey diagram Farey(n,k) of order (n,k).
Original entry on oeis.org
0, 0, 0, 0, 2, 0, 0, 5, 5, 0, 0, 9, 10, 9, 0, 0, 14, 19, 19, 14, 0, 0, 20, 27, 32, 27, 20, 0, 0, 27, 40, 47, 47, 40, 27, 0, 0, 35, 51, 68, 66, 68, 51, 35, 0, 0, 44, 68, 85, 96, 96, 85, 68, 44, 0, 0, 54, 82, 112, 118, 134, 118, 112, 82, 54, 0, 0, 65, 103, 137, 156, 167, 167, 156, 137, 103, 65, 0, 0, 77, 120, 166, 187, 217, 204, 217, 187, 166, 120, 77, 0
Offset: 0
The full array T(n,k), n >= 0, k >= 0, begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ..
0, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, ..
0, 5, 10, 19, 27, 40, 51, 68, 82, 103, 120, 145, 165, ..
0, 9, 19, 32, 47, 68, 85, 112, 137, 166, 196, 235, 265, ..
0, 14, 27, 47, 66, 96, 118, 156, 187, 229, 266, 320, 358, ..
0, 20, 40, 68, 96, 134, 167, 217, 261, 317, 366, 436, 491, ..
0, 27, 51, 85, 118, 167, 204, 267, 318, 384, 441, 528, 589, ..
...
-
A005728 := proc(n) 1+add(numtheory[phi](i), i=1..n) ; end proc: # called F_n in the paper
Amn:=proc(m,n) local a,i,j; # A331781 or equally A333295. Diagonal is A018805.
a:=0; for i from 1 to m do for j from 1 to n do
if igcd(i,j)=1 then a:=a+1; fi; od: od: a; end;
DFD:=proc(m,n) local d,t1,u,v; global A005728, Amn;
t1:=0; for u from 1 to m do for v from 1 to n do
d:=igcd(u,v); if d>=1 then t1:=t1 + (u+v)*numtheory[phi](d)/d; fi; od: od:
t1; end;
for m from 0 to 8 do lprint([seq(DFD(m,n),n=0..20)]); od:
-
T[n_, k_] := Sum[d = GCD[u, v]; If[d >= 1, (u+v)*EulerPhi[d]/d, 0], {u, 1, n}, {v, 1, k}];
Table[T[n-k, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 18 2023 *)
Showing 1-10 of 17 results.
Comments