cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358304 Array read by antidiagonals: T(n,k) (n>=0, k>=0) = number of decreasing lines defining the Farey diagram Farey(n,k) of order (n,k).

Original entry on oeis.org

0, 0, 0, 0, 2, 0, 0, 5, 5, 0, 0, 9, 10, 9, 0, 0, 14, 19, 19, 14, 0, 0, 20, 27, 32, 27, 20, 0, 0, 27, 40, 47, 47, 40, 27, 0, 0, 35, 51, 68, 66, 68, 51, 35, 0, 0, 44, 68, 85, 96, 96, 85, 68, 44, 0, 0, 54, 82, 112, 118, 134, 118, 112, 82, 54, 0, 0, 65, 103, 137, 156, 167, 167, 156, 137, 103, 65, 0, 0, 77, 120, 166, 187, 217, 204, 217, 187, 166, 120, 77, 0
Offset: 0

Views

Author

Keywords

Examples

			The full array T(n,k), n >= 0, k >= 0, begins:
  0,  0,  0,  0,   0,   0,   0,   0,   0,   0,   0,   0,   0, ..
  0,  2,  5,  9,  14,  20,  27,  35,  44,  54,  65,  77,  90, ..
  0,  5, 10, 19,  27,  40,  51,  68,  82, 103, 120, 145, 165, ..
  0,  9, 19, 32,  47,  68,  85, 112, 137, 166, 196, 235, 265, ..
  0, 14, 27, 47,  66,  96, 118, 156, 187, 229, 266, 320, 358, ..
  0, 20, 40, 68,  96, 134, 167, 217, 261, 317, 366, 436, 491, ..
  0, 27, 51, 85, 118, 167, 204, 267, 318, 384, 441, 528, 589, ..
  ...
		

Crossrefs

Cf. A358298.
The Farey Diagrams Farey(m,n) are studied in A358298-A358307 and A358882-A358885, the Completed Farey Diagrams of order (m,n) in A358886-A358889.

Programs

  • Maple
    A005728 := proc(n) 1+add(numtheory[phi](i), i=1..n) ; end proc: # called F_n in the paper
    Amn:=proc(m,n) local a,i,j;  # A331781 or equally A333295. Diagonal is A018805.
    a:=0; for i from 1 to m do for j from 1 to n do
    if igcd(i,j)=1 then a:=a+1; fi; od: od: a; end;
    DFD:=proc(m,n) local d,t1,u,v; global A005728, Amn;
    t1:=0; for u from 1 to m do for v from 1 to n do
    d:=igcd(u,v); if d>=1 then t1:=t1 + (u+v)*numtheory[phi](d)/d; fi; od: od:
    t1; end;
    for m from 0 to 8 do lprint([seq(DFD(m,n),n=0..20)]); od:
  • Mathematica
    T[n_, k_] := Sum[d = GCD[u, v]; If[d >= 1, (u+v)*EulerPhi[d]/d, 0], {u, 1, n}, {v, 1, k}];
    Table[T[n-k, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 18 2023 *)