A358317 Ordered squares of the chord lengths of the parabola y=x^2, where the chord ends are all possible points of the parabola with integer coordinates.
0, 2, 4, 10, 16, 18, 20, 26, 36, 50, 64, 68, 80, 82, 90, 98, 100, 122, 144, 148, 162, 170, 180, 196, 226, 234, 242, 250, 256, 260, 272, 290, 320, 324, 338, 362, 400, 404, 442, 450, 484, 490, 500, 530, 576, 578, 580, 592, 612, 626, 650, 676, 720, 722, 730, 738, 784, 788, 810, 842, 882, 900, 962, 980
Offset: 1
Keywords
Examples
0 is a term since it is the square of the chord length from (0,0) to (0,0). 10 = 1^2 + 3^2 is a term since it is the square of the chord length from (1,1) to (2,4).
Links
- Nicolay Avilov, Explanatory drawing
- Nicolay Avilov, Multiplication table for sequence
Programs
-
Python
# Program from Oleg Sorokin from math import isqrt limit = 2000 s = set() end = isqrt(limit) for m in range(0, end+1): for k in range(m%2, end+1, 2): c = m**2*(k**2+1) if c > limit: break s.add(c) print(sorted(s))
-
Python
from itertools import count, islice from sympy import divisors, integer_nthroot def A358317_gen(startvalue=0): # generator of terms >= startvalue for n in count(max(startvalue,0)): if n == 0: yield 0 else: for d in divisors(n,generator=True): a, b = integer_nthroot(d,2) if b: c, e = integer_nthroot(n//d-1,2) if e and not (c^a)&1: yield n break A358317_list = list(islice(A358317_gen(),30)) # Chai Wah Wu, Nov 24 2022
Comments