cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358345 a(n) is the number of even square divisors of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2
Offset: 1

Views

Author

Amiram Eldar, Nov 11 2022

Keywords

Comments

First differs from A235127 at n = 36.
The first position of k >= 0 in this sequence is A187941(k)^2.

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := Floor[e/2] + 1; f2[p_, e_] := If[p == 2, 1, Floor[e/2] + 1]; a[1] = 0; a[n_] := Times @@ f1 @@@ (fct = FactorInteger[n]) - Times @@ f2 @@@ fct; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, 1+f[i,2]\2) - prod(i=1, #f~, if(f[i,1] == 2, 1, 1+f[i,2]\2))};
    
  • PARI
    a(n) = sumdiv(n, d, if (issquare(d) && !(d%2), 1)); \\ Michel Marcus, Nov 11 2022

Formula

a(n) = A046951(n) - A298735(n).
a(n) = 2 * A046951(n) - A046951(4*n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi^2/24 (A222171).