cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A367023 Triangle read by rows, T(n, k) = [x^k] p(n), where p(n) = hypergeom([1/2, -n - 1, -n], [2, 2], 4*x).

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 12, 5, 1, 10, 40, 50, 14, 1, 15, 100, 250, 210, 42, 1, 21, 210, 875, 1470, 882, 132, 1, 28, 392, 2450, 6860, 8232, 3696, 429, 1, 36, 672, 5880, 24696, 49392, 44352, 15444, 1430, 1, 45, 1080, 12600, 74088, 222264, 332640, 231660, 64350, 4862
Offset: 0

Views

Author

Peter Luschny, Nov 06 2023

Keywords

Examples

			Triangle T(n, k) starts:
  [0] 1;
  [1] 1,  1;
  [2] 1,  3,    2;
  [3] 1,  6,   12,     5;
  [4] 1, 10,   40,    50,    14;
  [5] 1, 15,  100,   250,   210,     42;
  [6] 1, 21,  210,   875,  1470,    882,    132;
  [7] 1, 28,  392,  2450,  6860,   8232,   3696,    429;
  [8] 1, 36,  672,  5880, 24696,  49392,  44352,  15444,  1430;
  [9] 1, 45, 1080, 12600, 74088, 222264, 332640, 231660, 64350, 4862;
		

Crossrefs

Cf. A128088 (row sums), A358368 (central terms), A367022.

Programs

  • Maple
    p := n -> hypergeom([1/2, -n - 1, -n], [2, 2], 4*x):
    T := (n, k) -> coeff(simplify(p(n)), x, k):
    seq(seq(T(n, k), k = 0..n), n = 0..9);
  • Mathematica
    T[n_,k_]:=Binomial[n,k]*Binomial[n+1,k]*Binomial[2*k,k]/(k+1)^2;Flatten[Table[T[n,k],{n,0,9},{k,0,n}]]
    (* Detlef Meya, Nov 22 2023 *)

Formula

T(2*n, n) = Sum_{k=0..n} CatalanNumber(n)^2 * binomial(n + k, k).
From Detlef Meya, Nov 22 2023: (Start)
T(n, k) = binomial(n, k)*binomial(n+1, k)*binomial(2*k, k)/(k+1)^2.
T(n, k) = A001263(n+1, k+1)*binomial(2*k, k)/(k+1). (End)
Showing 1-1 of 1 results.