A358370 a(n) is the size of the largest 3-independent set in the cyclic group Zn.
0, 0, 0, 1, 1, 1, 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 3, 5, 3, 5, 4, 6, 5, 6, 4, 7, 5, 7, 5, 8, 6, 8, 7, 9, 6, 9, 6, 10, 7, 10, 7, 11, 9, 11, 8, 12, 8, 12, 9, 13, 9, 13, 11, 14, 9, 14, 10, 15, 10, 15, 10, 16, 13, 16, 11, 17, 12, 17, 12, 18, 12, 18, 15, 19, 14
Offset: 1
Links
- Béla Bajnok, Additive Combinatorics in Groups and Geometric Combinatorics on Spheres, arXiv:2211.01890 [math.NT], 2022. See p. 4.
- Béla Bajnok and Imre Ruzsa, The independence number of a subset of an abelian group. Integers, 3 (2003), Paper A2. See p. 5.
Programs
-
Mathematica
b[n_]:=Min[Intersection[Divisors[n], Select[Prime[Range[PrimePi[n]]], Mod[#, 6]==5 &]]]; a[n_]:=If[EvenQ[n], Floor[n/4], If[IntegerQ[b[n]], (1+1/b[n])n/6, Floor[n/6]]]; Array[a,80]
Formula
a(n) = floor(n/4) if n is even, a(n) = (1 + 1/p)*n/6 if n is odd with smallest prime divisor p congruent 5 mod 6, and a(n) = floor(n/6) otherwise.