A358374 Numbers k such that the k-th standard ordered rooted tree is an identity tree (counted by A032027).
1, 2, 3, 5, 6, 7, 10, 13, 17, 19, 21, 33, 34, 38, 39, 42, 45, 49, 51, 53, 65, 66, 67, 81, 97, 130, 131, 133, 134, 135, 145, 161, 162, 177, 193, 195, 209, 259, 261, 262, 263, 266, 269, 289, 290, 305, 321, 322, 353, 387, 389, 401, 417, 513, 517, 518, 519, 522
Offset: 1
Keywords
Examples
The terms together with their corresponding ordered rooted trees begin: 1: o 2: (o) 3: ((o)) 5: (((o))) 6: ((o)o) 7: (o(o)) 10: (((o))o) 13: (o((o))) 17: ((((o)))) 19: (((o))(o)) 21: ((o)((o))) 33: (((o)o)) 34: ((((o)))o) 38: (((o))(o)o) 39: (((o))o(o)) 42: ((o)((o))o) 45: ((o)o((o)))
Links
Crossrefs
These trees are counted by A032027.
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; srt[n_]:=If[n==1,{},srt/@stc[n-1]]; Select[Range[100],FreeQ[srt[#],[_]?(!UnsameQ@@#&)]&]
Comments