cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A358410 a(n) = Sum_{d|n} (d + n/d - 2)!/(d - 1)!.

Original entry on oeis.org

1, 2, 3, 9, 25, 130, 721, 5069, 40333, 363006, 3628801, 39917607, 479001601, 6227025848, 87178291591, 1307674408449, 20922789888001, 355687428461452, 6402373705728001, 121645100412461861, 2432902008176660217, 51090942171749356812, 1124000727777607680001
Offset: 1

Views

Author

Seiichi Manyama, Nov 14 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (# + n/# - 2)!/(# - 1)! &]; Array[a, 23] (* Amiram Eldar, Aug 30 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d+n/d-2)!/(d-1)!);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, (k-1)!*(x/(1-x^k))^k))

Formula

G.f.: Sum_{k>0} (k-1)! * (x/(1 - x^k))^k.
If p is prime, a(p) = 1 + (p-1)!.

A358411 a(n) = Sum_{d|n} (d + n/d - 1)!/(d - 1)!.

Original entry on oeis.org

1, 4, 9, 34, 125, 762, 5047, 40468, 362949, 3629560, 39916811, 479007174, 6227020813, 87178331590, 1307674370745, 20922790251808, 355687428096017, 6402373709377404, 121645100408832019, 2432902008216565330, 51090942171709621965, 1124000727778086681754
Offset: 1

Views

Author

Seiichi Manyama, Nov 14 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (# + n/# - 1)!/(# - 1)! &]; Array[a, 22] (* Amiram Eldar, Aug 30 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d+n/d-1)!/(d-1)!);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, k!*x^k/(1-x^k)^(k+1)))

Formula

G.f.: Sum_{k>0} k! * x^k/(1 - x^k)^(k+1).
If p is prime, a(p) = p + p!.
Showing 1-2 of 2 results.