A358392 Number of nonempty subsets of {1, 2, ..., n} with GCD equal to 1 and containing the sum of any two elements whenever it is at most n.
1, 1, 2, 3, 7, 9, 19, 27, 46, 63, 113, 148, 253, 345, 539, 734, 1198, 1580, 2540, 3417, 5233, 7095, 11190, 14720, 22988, 31057, 47168, 63331, 98233, 129836, 200689, 269165, 406504, 546700, 838766, 1108583, 1700025, 2281517, 3437422, 4597833, 7023543, 9308824, 14198257, 18982014, 28556962
Offset: 1
Keywords
Links
- Max Alekseyev, Table of n, a(n) for n = 1..100
- Marcel K. Goh et al., Counting numerical semigroups by largest element of minimal generating set, MathOverflow, 2022.
Crossrefs
Formula
a(n) = Sum_{k=1..n} moebius(k) * A103580(floor(n/k)).
Comments