cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358393 First of three consecutive primes p,q,r such that p*q + p*r - q*r, p*q - p*r + q*r and -p*q + p*r + q*r are all prime.

Original entry on oeis.org

261977, 496163, 1943101, 2204273, 2502827, 2632627, 2822381, 2878543, 3291593, 3431891, 4122043, 4269679, 5205671, 5224361, 5565139, 6248881, 6600989, 6881291, 7568963, 8181317, 8251277, 8377777, 9005561, 9644911, 10226233, 11096753, 11767801, 12252271, 13197361, 13574489, 13730263, 14064901
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Nov 13 2022

Keywords

Examples

			a(1) = 261977 is a term because 261977, 261983 and 262007 are consecutive primes with 261977*261983 + 261977*262007 - 261983*262007 = 68631948349,
261977*261983 - 261977*262007 + 261983*262007 = 68635092433, and
-261977*261983 + 261977*262007 + 261983*262007 = 68647667329 prime.
		

Crossrefs

Contained in A054643.

Programs

  • Maple
    q:= 2: r:= 3:
    R:= NULL: count:= 0:
    while count < 40 do
      p:= q; q:= r; r:= nextprime(r);
      s:= p*(q+r)+q*r;
      if  isprime(s-2*p*q) and isprime(s-2*p*r) and isprime(s-2*q*r) then       R:= R, p; count:= count+1;
      fi
    od:
    R;
  • Mathematica
    f[p_, q_, r_] := PrimeQ[p*q + p*r - q*r] && PrimeQ[p*q - p*r + q*r] && PrimeQ[-p*q + p*r + q*r]; Select[Partition[Prime[Range[10^6]], 3, 1], f @@ # &][[;; , 1]] (* Amiram Eldar, Nov 13 2022 *)
  • Python
    from itertools import islice
    from sympy import isprime, nextprime
    def agen():
        p, q, r = 2, 3, 5
        while True:
            pq, pr, qr = p*q, p*r, q*r
            if all(isprime(t) for t in [pq+pr-qr, pq-pr+qr, -pq+pr+qr]): yield p
            p, q, r = q, r, nextprime(r)
    print(list(islice(agen(), 15))) # Michael S. Branicky, Nov 13 2022