cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A358412 Least number k coprime to 2 and 3 such that sigma(k)/k >= n.

Original entry on oeis.org

1, 5391411025, 5164037398437051798923642083026622326955987448536772329145127064375
Offset: 1

Views

Author

Jianing Song, Nov 14 2022

Keywords

Comments

Data copied from the Hi.gher. Space link where Mercurial, the Spectre calculated the terms. We have a(2) = 5^2*7*...*29 and a(3) = 5^4*7^3*11^2*13^2*17*...*157 ~ 5.16404*10^66. a(4) = 5^5*7^4*11^3*13^3*17^2*19^2*23^2*29^2*31^2*37^2*41*...*853 ~ 1.83947*10^370 is too large to display.

Examples

			a(2) = A047802(2) = 5391411025 is the smallest abundant number coprime to 2 and 3.
Even if there is a number k coprime to 2 and 3 with sigma(k)/k = 3, we have that k is a square since sigma(k) is odd. If omega(k) = m, then 3 = sigma(k)/k < Product_{i=3..m+2} (prime(i)/(prime(i)-1)) => m >= 33, and we have k >= prime(3)^2*...*prime(35)^2 ~ 6.18502*10^112 > A358413(2) ~ 5.16403*10^66. So a(3) = A358413(2).
Even if there is a number k coprime to 2 and 3 with sigma(k)/k = 4, there can be at most 2 odd exponents in the prime factorization of k (see Theorem 2.1 of the Broughan and Zhou link). If omega(k) = m, then 4 = sigma(k)/k < Product_{i=3..m+2} (prime(i)/(prime(i)-1)) => m >= 140, and we have k >= prime(3)^2*...*prime(140)^2*prime(141)*prime(142) ~ 2.65585*10^669 > A358414(2) ~ 1.83947*10^370. So a(4) = A358414(2).
		

Crossrefs

Smallest k-abundant number which is not divisible by any of the first n primes: A047802 (k=2), A358413 (k=3), A358414 (k=4).
Least p-rough number k such that sigma(k)/k >= n: A023199 (p=2), A119240 (p=3), this sequence (p=5), A358418 (p=7), A358419 (p=11).

A358413 Smallest 3-abundant number (sigma(x) > 3x) which is not divisible by any of the first n primes.

Original entry on oeis.org

180, 1018976683725, 5164037398437051798923642083026622326955987448536772329145127064375
Offset: 0

Views

Author

Jianing Song, Nov 14 2022

Keywords

Comments

Data copied from the Hi.gher. Space link where Mercurial, the Spectre calculated the terms. We have a(0) = 2^2*3^2*5, a(1) = 3^3*5^2*7^2*11*13*17*19*23*29, and a(2) = 5^4*7^3*11^2*13^2*17*...*157 ~ 5.16404*10^66. a(3) = 7^3*11^3*13^2*17^2*19^2*23^2*29^2*31*...*569 ~ 2.54562*10^239 and a(4) = 11^3*13^3*17^2*...*47^2*53*...*1597 ~ 3.99515*10^688 are too large to display.

Examples

			a(1) = A119240(3) = 1018976683725 is the smallest 3-abundant odd number.
a(2) = A358412(3) = 5164037398437051798923642083026622326955987448536772329145127064375 is the smallest 3-abundant number that is coprime to 2 and 3.
		

Crossrefs

Cf. A068403 (3-abundant numbers).
Smallest k-abundant number which is not divisible by any of the first n primes: A047802 (k=2), this sequence (k=3), A358414 (k=4).
Least p-rough number k such that sigma(k)/k >= n: A023199 (p=2), A119240 (p=3), A358412 (p=5), A358418 (p=7), A358419 (p=11).

A358414 Smallest 4-abundant number (sigma(x) > 4x) which is not divisible by any of the first n primes.

Original entry on oeis.org

27720, 1853070540093840001956842537745897243375
Offset: 0

Views

Author

Jianing Song, Nov 14 2022

Keywords

Comments

Data copied from the Hi.gher. Space link where Mercurial, the Spectre calculated the terms. We have a(0) = 2^3*3^2*5*7*11 and a(1) = 3^5*5^3*7^2*11^2*13*...*89 ~ 1.85307*10^39. a(2) = 5^5*7^4*11^3*13^3*17^2*19^2*23^2*29^2*31^2*37^2*41*...*853 ~ 1.83947*10^370, a(3) = 7^5*11^3*13^3*17^3*19^3*23^2*...*97^2*101*...*4561 ~ 1.11116*10^1986, and a(4) = 11^4*13^4*17^3*19^3*23^3*29^3*31^3*37^2*...*181^2*191*...*18493 ~ 2.99931*10^8063 are too large to display.

Examples

			a(1) = A119240(4) = 1853070540093840001956842537745897243375 is the smallest 4-abundant odd number.
a(2) = A358412(4) ~ 1.83947*10^370 is the smallest 4-abundant number that is coprime to 2 and 3.
		

Crossrefs

Cf. A068404 (4-abundant numbers).
Smallest k-abundant number which is not divisible by any of the first n primes: A047802 (k=2), A358413 (k=3), this sequence (k=4).
Least p-rough number k such that sigma(k)/k >= n: A023199 (p=2), A119240 (p=3), A358412 (p=5), A358418 (p=7), A358419 (p=11).

A358418 Least number k coprime to 2, 3, and 5 such that sigma(k)/k >= n.

Original entry on oeis.org

1, 20169691981106018776756331
Offset: 1

Views

Author

Jianing Song, Nov 14 2022

Keywords

Comments

Data copied from the Hi.gher. Space link where Mercurial, the Spectre calculated the terms. We have a(2) = 7^2*11^2*13*...*67 ~ 2.01697*10^25. a(3) = 7^3*11^3*13^2*17^2*19^2*23^2*29^2*31*...*569 ~ 2.54562*10^239 and a(4) = 7^5*11^3*13^3*17^3*19^3*23^2*...*97^2*101*...*4561 ~ 1.11116*10^1986 are too large to display.

Examples

			a(2) = A047802(3) = 20169691981106018776756331 is the smallest abundant number coprime to 2, 3, and 5.
Even if there is a number k coprime to 2, 3, and 5 with sigma(k)/k = 3, we have that k is a square since sigma(k) is odd. If omega(k) = m, then 3 = sigma(k)/k < Product_{i=4..m+3} (prime(i)/(prime(i)-1)) => m >= 97, and we have k >= prime(4)^2*...*prime(100)^2 ~ 2.46692*10^436 > A358413(3) ~ 2.54562*10^239. So a(3) = A358413(3).
Even if there is a number k coprime to 2, 3, and 5 with sigma(k)/k = 4, there can be at most 2 odd exponents in the prime factorization of k (see Theorem 2.1 of the Broughan and Zhou link). If omega(k) = m, then 4 = sigma(k)/k < Product_{i=4..m+3} (prime(i)/(prime(i)-1)) => m >= 606, and we have k >= prime(4)^2*...*prime(607)^2*prime(608)*prime(609) ~ 6.54355*10^3814 > A358414(3) ~ 1.11116*10^1986. So a(4) = A358414(3).
		

Crossrefs

Smallest k-abundant number which is not divisible by any of the first n primes: A047802 (k=2), A358413 (k=3), A358414 (k=4).
Least p-rough number k such that sigma(k)/k >= n: A023199 (p=2), A119240 (p=3), A358412 (p=5), this sequence (p=7), A358419 (p=11).
Showing 1-4 of 4 results.