A357498 Triangle read by rows where each term in row n is the next greater multiple of n..1 divided by n..1.
1, 1, 3, 1, 2, 5, 1, 2, 4, 9, 1, 2, 3, 5, 11, 1, 2, 3, 5, 8, 17, 1, 2, 3, 4, 6, 10, 21, 1, 2, 3, 4, 6, 9, 14, 29, 1, 2, 3, 4, 5, 7, 10, 16, 33, 1, 2, 3, 4, 5, 7, 9, 13, 20, 41, 1, 2, 3, 4, 5, 6, 8, 11, 15, 23, 47, 1, 2, 3, 4, 5, 6, 8, 10, 13, 18, 28, 57
Offset: 1
Examples
Triangle begins: n/k| 1 2 3 4 5 6 7 -------------------------------- 1 | 1; 2 | 1, 3; 3 | 1, 2, 5; 4 | 1, 2, 4, 9; 5 | 1, 2, 3, 5, 11; 6 | 1, 2, 3, 5, 8, 17; 7 | 1, 2, 3, 4, 6, 10, 21; ... For row n=6, we have: A357431 row 6 10 12 15 16 17 divided by 6 5 4 3 2 1 results in 1 2 3 5 8 17
Links
- Neal Gersh Tolunsky, Table of n, a(n) for n = 1..10011 (141 rows, flattened)
Programs
-
Mathematica
row[n_] := Module[{k = n, s = Table[0, n], r}, s[[1]] = 1; Do[k++; k += If[(r = Mod[k, i]) == 0, 0, i - Mod[k, i]]; s[[n + 1 - i]] = k/i, {i, n - 1, 1, -1}]; s]; Array[row, 12] // Flatten (* Amiram Eldar, Oct 01 2022 *)
-
PARI
row(n) = my(v=vector(n)); v[1] = n; for (k=2, n, v[k] = v[k-1] + (n-k+1) - (v[k-1] % (n-k+1));); vector(n, k, v[k]/(n-k+1)); \\ Michel Marcus, Nov 16 2022
Comments