cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358454 Number of weakly transitive ordered rooted trees with n nodes.

Original entry on oeis.org

1, 1, 1, 3, 6, 13, 33, 80, 201, 509, 1330, 3432, 8982, 23559, 62189
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2022

Keywords

Comments

We define an unlabeled ordered rooted tree to be weakly transitive if every branch of a branch of the root is itself a branch of the root.

Examples

			The a(1) = 1 through a(6) = 13 trees:
  o  (o)  (oo)  (ooo)   (oooo)   (ooooo)
                ((o)o)  ((o)oo)  ((o)ooo)
                (o(o))  ((oo)o)  ((oo)oo)
                        (o(o)o)  ((ooo)o)
                        (o(oo))  (o(o)oo)
                        (oo(o))  (o(oo)o)
                                 (o(ooo))
                                 (oo(o)o)
                                 (oo(oo))
                                 (ooo(o))
                                 ((o)(o)o)
                                 ((o)o(o))
                                 (o(o)(o))
		

Crossrefs

The unordered version is A290689, ranked by A290822.
The directed version is A358453.
A000081 counts rooted trees.
A306844 counts anti-transitive rooted trees.

Programs

  • Mathematica
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],Complement[Union@@#,#]=={}&]],{n,10}]