cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358496 a(n) = Sum_{k=0..n} binomial(binomial(n, k), k).

Original entry on oeis.org

1, 2, 3, 7, 24, 176, 2623, 79479, 5141566, 669156932, 178757299486, 104033138190939, 125893536876304530, 320091464865316176891, 1828276720220263211454403, 22393381352339181425954204921, 582288411818399885839904060337943, 34678571156322738984042119670750665153
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[Binomial[n, k], k], {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n) = sum(k=0, n, binomial(binomial(n, k), k)); \\ Michel Marcus, Nov 19 2022

Formula

Limit_{n->infinity} a(n)^(1/n^2) = r^(r^2/(1-2*r)) = 1.533628065110458582..., where r = A220359 = 0.70350607643066243096929661621777... is the real root of the equation (1-r)^(2*r-1) = r^(2*r).