A358508 Least Matula-Goebel number of a tree with exactly n permutations.
1, 6, 12, 24, 48, 30, 192, 104, 148, 72, 3072, 60, 12288, 832, 144, 712, 196608, 222, 786432, 120, 288, 13312
Offset: 1
Examples
The terms together with their corresponding trees begin: 1: o 6: (o(o)) 12: (oo(o)) 24: (ooo(o)) 48: (oooo(o)) 30: (o(o)((o))) 192: (oooooo(o)) 104: (ooo(o(o))) 148: (oo(oo(o))) 72: (ooo(o)(o)) 3072: (oooooooooo(o)) 60: (oo(o)((o))) 12288: (oooooooooooo(o)) 832: (oooooo(o(o))) 144: (oooo(o)(o)) 712: (ooo(ooo(o)))
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]] MGTree[n_Integer]:=If[n===1,{},MGTree/@primeMS[n]] treeperms[t_]:=Times @@ Cases[t,b:{}:>Length[Permutations[b]],{0,Infinity}]; uv=Table[treeperms[MGTree[n]],{n,100000}]; Table[Position[uv,k][[1,1]],{k,Min@@Complement[Range[Max@@uv],uv]-1}]
Comments