cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358508 Least Matula-Goebel number of a tree with exactly n permutations.

Original entry on oeis.org

1, 6, 12, 24, 48, 30, 192, 104, 148, 72, 3072, 60, 12288, 832, 144, 712, 196608, 222, 786432, 120, 288, 13312
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2022

Keywords

Comments

The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
To get a permutation of a tree, we choose a permutation of the multiset of branches of each node.

Examples

			The terms together with their corresponding trees begin:
      1: o
      6: (o(o))
     12: (oo(o))
     24: (ooo(o))
     48: (oooo(o))
     30: (o(o)((o)))
    192: (oooooo(o))
    104: (ooo(o(o)))
    148: (oo(oo(o)))
     72: (ooo(o)(o))
   3072: (oooooooooo(o))
     60: (oo(o)((o)))
  12288: (oooooooooooo(o))
    832: (oooooo(o(o)))
    144: (oooo(o)(o))
    712: (ooo(ooo(o)))
		

Crossrefs

Position of first appearance of n in A206487.
The sorted version is A358507.
A000081 counts rooted trees, ordered A000108.
A214577 and A358377 rank trees with no permutations.

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]
    MGTree[n_Integer]:=If[n===1,{},MGTree/@primeMS[n]]
    treeperms[t_]:=Times @@ Cases[t,b:{}:>Length[Permutations[b]],{0,Infinity}];
    uv=Table[treeperms[MGTree[n]],{n,100000}];
    Table[Position[uv,k][[1,1]],{k,Min@@Complement[Range[Max@@uv],uv]-1}]