A358522 Least number k such that the k-th standard ordered tree has Matula-Goebel number n, i.e., A358506(k) = n.
1, 2, 3, 4, 5, 6, 9, 8, 11, 10, 17, 12, 33, 18, 19, 16, 257, 22, 129, 20, 35, 34, 1025, 24, 37, 66, 43, 36, 513, 38, 65537, 32, 67, 514, 69, 44, 2049, 258, 131, 40
Offset: 1
Examples
The terms together with their standard ordered trees begin: 1: o 2: (o) 3: ((o)) 4: (oo) 5: (((o))) 6: ((o)o) 9: ((oo)) 8: (ooo) 11: ((o)(o)) 10: (((o))o) 17: ((((o)))) 12: ((o)oo) 33: (((o)o)) 18: ((oo)o) 19: (((o))(o)) 16: (oooo) 257: (((oo))) 22: ((o)(o)o) 129: ((ooo)) 20: (((o))oo) 35: ((oo)(o)) 34: ((((o)))o)
Links
Crossrefs
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; srt[n_]:=If[n==1,{},srt/@stc[n-1]]; mgnum[t_]:=If[t=={},1,Times@@Prime/@mgnum/@t]; uv=Table[mgnum[srt[n]],{n,10000}]; Table[Position[uv,k][[1,1]],{k,Min@@Complement[Range[Max@@uv],uv]-1}]
Comments