cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358522 Least number k such that the k-th standard ordered tree has Matula-Goebel number n, i.e., A358506(k) = n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 8, 11, 10, 17, 12, 33, 18, 19, 16, 257, 22, 129, 20, 35, 34, 1025, 24, 37, 66, 43, 36, 513, 38, 65537, 32, 67, 514, 69, 44, 2049, 258, 131, 40
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2022

Keywords

Comments

We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The terms together with their standard ordered trees begin:
    1: o
    2: (o)
    3: ((o))
    4: (oo)
    5: (((o)))
    6: ((o)o)
    9: ((oo))
    8: (ooo)
   11: ((o)(o))
   10: (((o))o)
   17: ((((o))))
   12: ((o)oo)
   33: (((o)o))
   18: ((oo)o)
   19: (((o))(o))
   16: (oooo)
  257: (((oo)))
   22: ((o)(o)o)
  129: ((ooo))
   20: (((o))oo)
   35: ((oo)(o))
   34: ((((o)))o)
		

Crossrefs

Position of first appearance of n in A358506.
The sorted version is A358521.
A000108 counts ordered rooted trees, unordered A000081.
A214577 and A358377 rank trees with no permutations.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    mgnum[t_]:=If[t=={},1,Times@@Prime/@mgnum/@t];
    uv=Table[mgnum[srt[n]],{n,10000}];
    Table[Position[uv,k][[1,1]],{k,Min@@Complement[Range[Max@@uv],uv]-1}]