A358551 Number of nodes in the ordered rooted tree with binary encoding A014486(n).
1, 2, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 1
Keywords
Examples
The first few rooted trees in binary encoding are: 0: o 2: (o) 10: (oo) 12: ((o)) 42: (ooo) 44: (o(o)) 50: ((o)o) 52: ((oo)) 56: (((o))) 170: (oooo) 172: (oo(o)) 178: (o(o)o) 180: (o(oo)) 184: (o((o)))
Crossrefs
Run-lengths are A000108.
Binary encodings are listed by A014486.
Branches of the ordered tree are counted by A057515.
Edges of the ordered tree are counted by A072643.
The Matula-Goebel number of the ordered tree is A127301.
For standard instead of binary encoding we have A358372.
The standard ranking of the ordered tree is A358523.
Programs
-
Mathematica
binbalQ[n_]:=n==0||Count[IntegerDigits[n,2],0]==Count[IntegerDigits[n,2],1]&&And@@Table[Count[Take[IntegerDigits[n,2],k],0]<=Count[Take[IntegerDigits[n,2],k],1],{k,IntegerLength[n,2]}]; bint[n_]:=If[n==0,{},ToExpression[StringReplace[StringReplace[ToString[IntegerDigits[n,2]/.{1->"{",0->"}"}],","->""],"} {"->"},{"]]]; Table[Count[bint[k],_,{0,Infinity}],{k,Select[Range[0,10000],binbalQ]}]
Formula
a(n) = A072643(n) + 1.
Comments