cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358557 Numbers k for which denominator(H(k)) < LCM(1..k), where harmonic numbers H(k) = Sum_{i=1..k} 1/i = r(k)/q(k).

Original entry on oeis.org

6, 7, 8, 18, 19, 20, 21, 22, 23, 24, 25, 26, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 100, 101, 102
Offset: 1

Views

Author

Yifan Xie, Nov 22 2022

Keywords

Comments

LCM(1..k) is a common denominator for the harmonic numbers, and the present terms k are where the sum reduces to a smaller denominator (A002805).
We can find a prime p and a pair of positive integers t < p and o for every positive integer k that p^o*t <= k < p^o*(t+1). For positive integers i that are not divisible by p^o, a multiple of p will be added to the numerator of the reciprocal sum; for i's that are divisible by p^o, the number that will be added to the numerator of the reciprocal sum is divisible by r(t). So k is in the sequence if and only if p^o*t <= k < p^o*(t+1) where p is a prime and p divides r(t).
The sequence is the answer to Problem 23 of the 2022 AMC12A.

Crossrefs

Cf. A001008/A002805 (harmonic numbers), A003418 (LCM).
Cf. A110566 (common factor).
Cf. A098464 (complement), A112813.
Cf. A330680 (numbers that begin a run of consecutive integers not in the sequence).

Programs

  • Mathematica
    Select[Range[100], Denominator[HarmonicNumber[#]] < LCM @@ Range[#] &] (* Amiram Eldar, Nov 25 2022 *)
  • PARI
    isok(n) = lcm(vector(n, i, i)) <> denominator(sum(i=1, n, 1/i)); \\ Thomas Scheuerle, Nov 23 2022

Formula

A110566(a(n)) > 1. - Thomas Scheuerle, Nov 23 2022