cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A358572 Smallest prime p in a sexy prime triple such that (p-3)/2 is also the smallest prime in a sexy prime triple (A023241).

Original entry on oeis.org

17, 97, 1117, 1217, 2897, 130337, 188857, 207997, 221197, 324517, 610817, 900577, 1090877, 1452317, 1719857, 1785097, 2902477, 3069917, 3246317, 4095097, 4536517, 4977097, 5153537, 5517637, 5745557, 6399677, 7168277, 7351957, 7588697, 7661077, 8651537, 8828497, 9153337
Offset: 1

Views

Author

Lamine Ngom, Nov 23 2022

Keywords

Comments

Also numbers m such that m-4, m-1, m+5, m+8, m+11 and m+20 cannot be represented as x*y + x + y, with x >= y > 1 (A254636).
Subsequence of A358571.
Number of terms < 10^k: 0, 2, 2, 5, 5, 12, 34, 150, 655, ...
All terms p and (p-3)/2 have a final decimal digit of 7. This follows from considering possibilities modulo 10 and implies p + 18 and (p-3)/2 + 18 are divisible by 5 and hence composite. Both p and (p-3)/2 are therefore also terms of A046118. - Andrew Howroyd, Dec 31 2022

Examples

			97 is the smallest prime in the sexy prime triple (97, 103, 109), and the triple (47 = (97 - 3)/2, 47 + 6, 47 + 12) forms another sexy prime triple. Hence 97 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[700000]], AllTrue[Join[# + {6,12}, (#-3)/2 + {0, 6, 12}], PrimeQ] &] (* Amiram Eldar, Nov 23 2022 *)
  • PARI
    istriple(p)={isprime(p) && isprime(p+6) && isprime(p+12)}
    isok(p)={istriple(p) && istriple((p-3)/2)}
    { forprime(p=1,10^7,if(isok(p), print1(p, ", "))) } \\ Andrew Howroyd, Dec 30 2022
Showing 1-1 of 1 results.