cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358573 a(n) = smallest prime p such that q, r and s are all prime, where q = p + 2*(2*n + 1), r = (p - 2*n - 1)/2, and s = (q + 2*n + 1)/2.

Original entry on oeis.org

11, 13, 19, 17, 19, 229, 47, 29, 163, 29, 31, 37, 47, 53, 1231, 41, 43, 61, 83, 61, 439, 1217, 59, 73, 59, 61, 67, 89, 83, 541, 71, 73, 103, 593, 271, 349, 83, 89, 103, 461, 239, 97, 107, 97, 211, 149, 107, 229, 263, 181, 499, 317, 139, 1453, 131, 809, 127, 137, 163
Offset: 0

Views

Author

Lamine Ngom, Nov 23 2022

Keywords

Comments

Equivalently, smallest prime of the form (p + q - 2*n - 1), where p is prime, q = p + 2*(2*n + 1) is prime, and (p + q + 2*n + 1) is also prime.
a(n) is the first term of the sequence of numbers m such that (m - 2*n - 2), (m - 1), (m + 4*n + 1) and (m + 6*n + 2) cannot be represented as x*y + x + y, with x >= y > 1 (A254636).
Such sequence contains only prime numbers which are the lesser of a pair of primes (p, q) such that the pair (r, s) also forms a pair of primes with the same difference, where q = p + 2*(2*n + 1), r = (p - 2*n - 1)/2, and s = (q + 2*n + 1)/2.

Examples

			229 is the lesser prime in the pair (229, 251) with difference 2*(2*5+1) = 22, and the couple (229-22/2)/2 = 109 and (251+22/2)/2 = 131 forms another prime pair with distance 22, and there is no prime lower than 229 with this property. Hence a(5) = 229.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{p=2, q, r, s}, While[!AllTrue[{(q = p + 2*(2*n + 1)), (r = (p - 2*n - 1)/2), (s = (q + 2*n + 1)/2)}, #>0 && PrimeQ[#] &], p = NextPrime[p]]; p]; Array[a, 60, 0] (* Amiram Eldar, Nov 23 2022 *)
  • PARI
    a(n) = my(p=2, q); while(!isprime(q = p + 2*(2*n + 1)) || !isprime((p - 2*n - 1)/2) || !isprime((q + 2*n + 1)/2), p=nextprime(p+1)); p; \\ Michel Marcus, Nov 23 2022