A358585 Number of ordered rooted trees with n nodes, most of which are leaves.
1, 0, 1, 1, 7, 11, 66, 127, 715, 1549, 8398, 19691, 104006, 258194, 1337220, 3467115, 17678835, 47440745, 238819350, 659060677, 3282060210, 9271024542, 45741281820, 131788178171, 644952073662, 1890110798926, 9183676536076, 27316119923002, 131873975875180, 397407983278484
Offset: 1
Keywords
Examples
The a(1) = 1 through a(6) = 11 ordered trees: o . (oo) (ooo) (oooo) (ooooo) ((o)oo) ((o)ooo) ((oo)o) ((oo)oo) ((ooo)) ((ooo)o) (o(o)o) ((oooo)) (o(oo)) (o(o)oo) (oo(o)) (o(oo)o) (o(ooo)) (oo(o)o) (oo(oo)) (ooo(o))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]]; Table[Length[Select[aot[n],Count[#,{},{0,Infinity}]>Count[#,[_],{0,Infinity}]&]],{n,10}]
-
PARI
a(n) = if(n==1, 1, n--; (binomial(2*n,n)/(n+1) - if(n%2, binomial(n, (n-1)/2)^2 / n))/2) \\ Andrew Howroyd, Jan 13 2024
Formula
From Andrew Howroyd, Jan 13 2024: (Start)
a(n) = Sum_{k=1..floor((n-1)/2)} A001263(n-1, k) for n >= 2.
a(2*n+1) = A000108(2*n)/2 for n >= 1. (End)
Extensions
a(16) onwards from Andrew Howroyd, Jan 13 2024