A358588 Number of n-node ordered rooted trees of height equal to the number of internal (non-leaf) nodes.
0, 0, 0, 0, 1, 8, 41, 171, 633, 2171, 7070, 22195, 67830, 203130, 598806, 1743258, 5023711, 14356226, 40737383, 114904941, 322432215, 900707165, 2506181060, 6948996085, 19207795836, 52944197508, 145567226556, 399314965956, 1093107693133, 2986640695436
Offset: 1
Keywords
Examples
The a(5) = 1 and a(6) = 8 ordered trees: ((o)(o)) ((o)(o)o) ((o)(oo)) ((o)o(o)) ((oo)(o)) (o(o)(o)) (((o))(o)) (((o)(o))) ((o)((o)))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Mathematica
aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]]; Table[Length[Select[aot[n],Count[#,[_],{0,Infinity}]==Depth[#]-1&]],{n,1,10}]
-
PARI
\\ Needs R(n,f) defined in A358590. seq(n) = {Vec(R(n, (h,p)->polcoef(subst(p, x, x/y), -h, y)), -n)} \\ Andrew Howroyd, Jan 01 2023
Formula
Conjectures from Chai Wah Wu, Apr 14 2024: (Start)
a(n) = 9*a(n-1) - 32*a(n-2) + 58*a(n-3) - 58*a(n-4) + 32*a(n-5) - 9*a(n-6) + a(n-7) for n > 7.
G.f.: x^5*(-x^2 + x - 1)/((x - 1)^3*(x^2 - 3*x + 1)^2). (End)
Extensions
Terms a(16) and beyond from Andrew Howroyd, Jan 01 2023