A358596 a(n) is the least prime p such that the concatenation p|n has exactly n prime factors with multiplicity.
3, 2, 83, 2, 67, 41, 947, 4519, 15659081, 2843, 337957, 389, 1616171, 6132829, 422116888343, 24850181, 377519743, 194486417892947, 533348873, 324403, 980825013273164555563, 25691144027, 273933405157, 1238831928746353181, 311195507789, 129917586781, 2159120477658983490299
Offset: 1
Examples
a(5) = 67 because 67 is prime and 675 = 3^3 * 5^2 with A001222(675) = 3+2 = 5, and no smaller prime works.
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..923
Programs
-
Maple
icat:= proc(a,b) 10^(1+ilog10(b))*a+b end proc: f:= proc(n) local p; p:= 1; do p:= nextprime(p); if numtheory:-bigomega(icat(p,n)) = n then return p fi; od end proc: map(f, [$1..17]); # Robert Israel, Feb 24 2023
Extensions
a(18) and a(21)-a(27) from Jon E. Schoenfield, Feb 24 2023
Comments