cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358624 Triangle read by rows. The coefficients of the Hahn polynomials in ascending order of powers. T(n, k) = n! * [x^k] hypergeom([-x, -n, n + 1], [1, 1], 1).

Original entry on oeis.org

1, 1, 2, 2, 6, 6, 6, 22, 30, 20, 24, 100, 170, 140, 70, 120, 548, 1050, 1120, 630, 252, 720, 3528, 7476, 8820, 6720, 2772, 924, 5040, 26136, 59388, 78708, 64680, 37884, 12012, 3432, 40320, 219168, 529896, 748440, 704550, 432432, 204204, 51480, 12870
Offset: 0

Views

Author

Peter Luschny, Nov 26 2022

Keywords

Examples

			[0]     1;
[1]     1,      2;
[2]     2,      6,      6;
[3]     6,     22,     30,     20;
[4]    24,    100,    170,    140,     70;
[5]   120,    548,   1050,   1120,    630,    252;
[6]   720,   3528,   7476,   8820,   6720,   2772,    924;
[7]  5040,  26136,  59388,  78708,  64680,  37884,  12012,  3432;
[8] 40320, 219168, 529896, 748440, 704550, 432432, 204204, 51480, 12870;
		

References

  • A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable, Springer-Verlag Berlin Heidelberg, 1991.

Crossrefs

Cf. A000142, A000984, A001564 (row sums), A133942 (alternating row sums).

Programs

  • Maple
    H := (n, x) -> n!*hypergeom([-x, -n, n + 1], [1, 1], 1):
    for n from 0 to 8 do seq(coeff(simplify(H(n, x)), x, k), k = 0..n) od;

Formula

The general formula for the Hahn polynomials is H(n, x, N, a, b) = (-1)^n*(Pochhammer(N-n, n)*Pochhammer(b+1, n) / n!)*hypergeom([-n, -x, a + b + n + 1], [b + 1, 1 - N], 1). We consider here the case N = a = b = 0.