A358624 Triangle read by rows. The coefficients of the Hahn polynomials in ascending order of powers. T(n, k) = n! * [x^k] hypergeom([-x, -n, n + 1], [1, 1], 1).
1, 1, 2, 2, 6, 6, 6, 22, 30, 20, 24, 100, 170, 140, 70, 120, 548, 1050, 1120, 630, 252, 720, 3528, 7476, 8820, 6720, 2772, 924, 5040, 26136, 59388, 78708, 64680, 37884, 12012, 3432, 40320, 219168, 529896, 748440, 704550, 432432, 204204, 51480, 12870
Offset: 0
Examples
[0] 1; [1] 1, 2; [2] 2, 6, 6; [3] 6, 22, 30, 20; [4] 24, 100, 170, 140, 70; [5] 120, 548, 1050, 1120, 630, 252; [6] 720, 3528, 7476, 8820, 6720, 2772, 924; [7] 5040, 26136, 59388, 78708, 64680, 37884, 12012, 3432; [8] 40320, 219168, 529896, 748440, 704550, 432432, 204204, 51480, 12870;
References
- A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable, Springer-Verlag Berlin Heidelberg, 1991.
Programs
-
Maple
H := (n, x) -> n!*hypergeom([-x, -n, n + 1], [1, 1], 1): for n from 0 to 8 do seq(coeff(simplify(H(n, x)), x, k), k = 0..n) od;
Formula
The general formula for the Hahn polynomials is H(n, x, N, a, b) = (-1)^n*(Pochhammer(N-n, n)*Pochhammer(b+1, n) / n!)*hypergeom([-n, -x, a + b + n + 1], [b + 1, 1 - N], 1). We consider here the case N = a = b = 0.