cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A379778 Triangular array read by rows, T(n,k) is the number of n X n matrices over GF(2) that converge to an idempotent at rank k, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 4, 6, 1, 64, 112, 28, 1, 4096, 7680, 2240, 120, 1, 1048576, 2031616, 634880, 39680, 496, 1, 1073741824, 2113929216, 682622976, 45711360, 666624, 2016, 1, 4398046511104, 8727373545472, 2863669444608, 198155698176, 3096182784, 10924032, 8128, 1
Offset: 0

Views

Author

Geoffrey Critzer, Jan 02 2025

Keywords

Examples

			Triangle begins:
        1;
        1,       1;
        4,       6,     1;
       64,     112,     28,    1;
     4096,    7680,   2240,   120,   1;
  1048576, 2031616, 634880, 39680, 496, 1;
  ...
		

Crossrefs

Cf. A358649 (row sums), A053763 (column k=0).

Programs

  • Mathematica
    nn = 7; q = 2; \[Gamma][n_, q_] := Product[q^n - q^i, {i, 0, n - 1}]; B[n_] := \[Gamma][n, q]/(q - 1)^n; e[u_] := Sum[u^n/B[n], {n, 0, nn}];
    f[u_] := Sum[q^(n^2 - n) u^n/B[n], {n, 0, nn}]; Map[Select[#, # > 0 &] &,
      Table[B[n], {n, 0, nn}] CoefficientList[Series[f[u] e[ t u], {u, 0, nn}], {u, t}]] // Flatten

Formula

Sum_{n>=0} Sum_{k=0..n} T(n,k)*y^k*x^n/B(n) = f(x)*e(y*x) where f(x) = Sum_{n>=0} q^(n^2-n)*x^n/B(n), e(x) = Sum_{n>=0} x^n/B(n), B(n) = Product_{i=0..n-1} (q^n-q^i)/(q-1)^n, and q=2.
Showing 1-1 of 1 results.