A358657 Numbers such that the three numbers before and the three numbers after are squarefree semiprimes.
216, 143100, 194760, 206136, 273420, 684900, 807660, 1373940, 1391760, 1516536, 1591596, 1611000, 1774800, 1882980, 1891764, 2046456, 2051496, 2163420, 2163960, 2338056, 2359980, 2522520, 2913840, 3108204, 4221756, 4297320, 4334940, 4866120, 4988880, 5108796, 5247144, 5606244, 5996844
Offset: 1
Keywords
Examples
The following numbers are squarefree semiprimes: 213 = 3*71, 214 = 2*107, 215 = 5*43, 217 = 7*31, 218 = 2*109, and 219 = 3*73. Thus, 216 is in this sequence.
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..10000 (first 169 terms from Robert Israel)
- Douglas E. Iannucci, Almost prime twin prime triplet twins, Journal of Recreational Mathematics, Vol. 33, No. 2 (2004-2005), pp. 125-129.
Programs
-
Magma
a:=[]; IsP:=IsPrime; Tau:=NumberOfDivisors; for m in [1..170000] do t:=36*m; if IsP((t-3) div 3) and IsP((t+3) div 3) and IsP((t-2) div 2) and IsP((t+2) div 2) and Tau(t-1) eq 4 and Tau(t+1) eq 4 then a:=a cat [t]; end if; end for; a; // Jon E. Schoenfield, Nov 26 2023
-
Maple
N:= 10^6: # for terms <= N P:= select(isprime, [2,seq(i,i=3..N/2,2)]): S:= NULL: for i from 1 to nops(P) do p:= P[i]; r:= ListTools:-BinaryPlace(P,N/p); if r <= i then break fi; S:= S, op(p * P[i+1 .. r]); od: S:= sort([S]): J:= select(t -> S[t+5] = S[t]+6, [$1..nops(S)-5]): map(t -> S[t+2]+1, J); # Robert Israel, Nov 26 2023
-
Mathematica
Select[Range[10000000],Transpose[FactorInteger[# - 3]][[2]] == {1, 1} && Transpose[FactorInteger[# - 2]][[2]] == {1, 1} && Transpose[FactorInteger[# - 1]][[2]] == {1, 1} && Transpose[FactorInteger[# + 3]][[2]] == {1, 1} && Transpose[FactorInteger[# + 2]][[2]] == {1, 1} && Transpose[FactorInteger[# + 1]][[2]] == {1, 1} &] 36*Flatten@Position[({1, 1}==Last@Transpose@FactorInteger@# &/@ {#-3,#-2,#-1,#+1,#+2,#+3}) & /@ (36*Range@(10^6)), {True ..}] (* Hans Rudolf Widmer, Aug 01 2024 *)
-
PARI
is(k) = if(k < 4, 0, my(d = [-3, -2, -1, 1, 2, 3]); for(i = 1, #d, if(factor(k+d[i])[,2] != [1,1]~, return(0))); 1); \\ Amiram Eldar, Nov 21 2024
-
Python
from itertools import count, islice from sympy import isprime, factorint def issfsemiprime(n): return list(factorint(n).values()) == [1, 1] if n&1 else isprime(n//2) def ok(n): return all(issfsemiprime(n+i) for i in (-2, 2, -3, -1, 1, 3)) def agen(): yield from (k for k in count(36, 36) if ok(k)) print(list(islice(agen(), 20))) # Michael S. Branicky, Nov 26 2022
Formula
a(n) = 2*(A158476(n) + 1). - Hugo Pfoertner, Dec 12 2022
Comments