cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358659 Decimal expansion of the asymptotic mean of the ratio between the number of exponential unitary divisors and the number of exponential divisors.

Original entry on oeis.org

9, 8, 4, 8, 8, 3, 6, 4, 1, 8, 7, 7, 2, 2, 8, 2, 9, 4, 0, 9, 5, 3, 7, 0, 1, 3, 8, 0, 4, 8, 9, 6, 1, 1, 3, 7, 6, 4, 7, 3, 1, 6, 3, 2, 2, 2, 2, 7, 0, 5, 8, 1, 3, 4, 5, 5, 0, 0, 6, 3, 6, 2, 3, 5, 5, 0, 2, 2, 3, 9, 6, 8, 0, 6, 5, 9, 0, 8, 2, 3, 8, 0, 0, 8, 1, 8, 9, 3, 8, 0, 9, 5, 5, 7, 4, 0, 8, 7, 6, 9, 1, 3, 3, 4, 4
Offset: 0

Views

Author

Amiram Eldar, Nov 25 2022

Keywords

Examples

			0.984883641877228294095370138048961137647316322227058...
		

Crossrefs

Similar sequences: A307869, A308042, A308043.

Programs

  • Mathematica
    r[n_] := 2^PrimeNu[n]/DivisorSigma[0, n]; $MaxExtraPrecision = 500; m = 500; f[x_] := Log[1 + Sum[x^e*(r[e] - r[e - 1]), {e, 4, m}]]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[Exp[f[1/2] + NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k)/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 120][[1]]

Formula

Equals lim_{m->oo} (1/m) Sum_{k=1..m} A278908(k)/A049419(k).
Equals Product_{p prime} (1 + Sum_{e >= 4} (r(e) - r(e-1))/p^e), where r(e) = A278908(e)/A049419(e).