A358674 Numbers k for which there is a factorization of k into such a pair of natural numbers x and y, that the sum (x * y') + (x' * y) will generate at least one carry when the addition is done in the primorial base. Here n' stands for A003415(n), the arithmetic derivative of n.
8, 9, 10, 15, 16, 20, 21, 22, 24, 25, 28, 30, 32, 33, 34, 35, 36, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 64, 65, 66, 68, 69, 72, 75, 76, 77, 78, 80, 81, 82, 84, 85, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115, 116, 118, 119
Offset: 1
Examples
Refer to the examples in A358235 to see why 24 is included in this sequence.
Crossrefs
Programs
-
PARI
isA358674(n) = !A358672(n);
-
PARI
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; A327936(n) = { my(f = factor(n)); for(k=1, #f~, f[k,2] = (f[k,2]>=f[k,1])); factorback(f); }; A329041sq(row,col) = A327936(A276086(row)*A276086(col)); isA358674(n) = { fordiv(n, d, if(d>(n/d), return(0)); if(1<A329041sq((d*A003415(n/d)), (A003415(d)*(n/d))), return(1))); (0); };