A358675 Numbers k such that for all nontrivial factorizations of k as x*y, the sum (x * y') + (x' * y) will generate at least one carry when the addition is done in the primorial base. Here n' stands for A003415(n), the arithmetic derivative of n.
8, 9, 10, 15, 16, 20, 21, 22, 25, 28, 30, 33, 34, 35, 39, 44, 46, 49, 50, 51, 55, 56, 57, 58, 65, 66, 68, 69, 77, 81, 82, 84, 85, 87, 91, 92, 93, 94, 95, 102, 106, 108, 111, 112, 115, 116, 118, 119, 120, 121, 123, 125, 128, 129, 133, 136, 138, 141, 142, 143, 145, 147, 148, 155, 156, 159, 160, 161
Offset: 1
Examples
16 has two nontrivial factorizations into two factors, 2*8 and 4*4. For both of these, the sums (2*A003415(8))+(A003415(2)+8) = 24+8 ("400" + "110") and (4*A003415(4))+(A003415(4)*4) = 16+16 ("220" + "220") generate carries in the primorial base (as 2 and 4 are the max. digits allowed in the second and third rightmost positions, see A049345), therefore 16 is included in this sequence.
Programs
-
PARI
isA358675(n) = ((n>1)&&!isprime(n)&&(1==A358235(n)));
-
PARI
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; A327936(n) = { my(f = factor(n)); for(k=1, #f~, f[k,2] = (f[k,2]>=f[k,1])); factorback(f); }; A329041sq(row,col) = A327936(A276086(row)*A276086(col)); isA358675(n) = if(1==n || isprime(n), 0, fordiv(n, d, if((d>1) && (d
A329041sq((d*A003415(n/d)), (A003415(d)*(n/d))), return(0))); (1));
Formula
{k | k is composite and A358235(k) = 1}.