cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358685 Number of primes < 10^n whose digits are all odd.

Original entry on oeis.org

3, 15, 57, 182, 790, 3217, 13298, 56866, 254689, 1128121, 5106701, 23266331, 107019385, 494689488, 2306491761, 10758057302, 50548874979
Offset: 1

Views

Author

Zhining Yang, Nov 26 2022

Keywords

Examples

			a(2) = 15 as there are 15 primes less than 100 whose digits are all odd: 3, 5, 7, 11, 13, 17, 19, 31, 37, 53, 59, 71, 73, 79, 97.
		

Crossrefs

Programs

  • Mathematica
    n=7
    Length[Select[Prime[Range[PrimePi[10^n]]], And @@ OddQ[IntegerDigits[#]] &]] (* Zhining Yang, Nov 26 2022 *)
    n = PrimePi[10^8];
    Sum[If[MemberQ[IntegerDigits[Prime[i]], _?EvenQ], 0, 1], {i, 1, n}]
    (* Jianlin Su, Nov 27 2022 *)
  • Python
    from sympy import primerange
    def a(n):
        p=list(primerange(3,10**n))
        return(sum(1 for k in p if all(int(d) %2 for d in str(k))==True))
    print ([a(n) for n in range(1,8)])
    
  • Python
    from sympy import isprime
    from itertools import count, islice, product
    def agen(): # generator of terms
        c = 3
        for d in count(2):
            yield c
            for p in product("13579", repeat=d-1):
                s = "".join(p)
                for last in "1379":
                    if isprime(int(s+last)): c += 1
    print(list(islice(agen(), 9))) # Michael S. Branicky, Nov 27 2022

Extensions

a(10)-a(14) from Michael S. Branicky, Nov 26 2022
a(15) from Zhining Yang, Dec 21 2022
a(16)-a(17) from Martin Ehrenstein, Dec 21 2022