A358690 Number of n-digit primes whose digits are all odd.
3, 12, 42, 125, 608, 2427, 10081, 43568, 197823, 873432, 3978580, 18159630, 83753054, 387670103, 1811802273, 8451565541, 39790817677
Offset: 1
Examples
a(2) = 12 as there are 12 2-digit primes whose digits are all odd: 11, 13, 17, 19, 31, 37, 53, 59, 71, 73, 79, 97.
Programs
-
Mathematica
Length[Select[Prime[Range[PrimePi[10^(n - 1)], PrimePi[10^n]]], And @@ OddQ[IntegerDigits[#]] &]]
-
Python
from sympy import primerange def a(n): num=0 for f in range(1,10,2): p=list(primerange(f*10**(n-1),(f+1)*10**(n-1))) num+=sum(1 for k in p if all(int(d) %2 for d in str(k))) return(num) print ([a(n) for n in range(1,8)])
-
Python
from sympy import isprime from itertools import count, islice, product def a(n): c = 0 if n > 1 else 1 for p in product("13579", repeat=n-1): s = "".join(p) for last in "1379": if isprime(int(s+last)): c += 1 return c print([a(n) for n in range(1, 10)]) # Michael S. Branicky, Nov 27 2022
Extensions
a(10)-a(14) from Michael S. Branicky, Nov 26 2022
a(15) from Zhining Yang, Dec 21 2022
a(16)-a(17) from Martin Ehrenstein, Dec 24 2022