A358692 Gilbreath transform of primes p(2*k) with 2 prefixed; see Comments.
1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
Examples
Corner of successive absolute difference array (including initial row of primes p(2*k) with 2 prefixed): 2 3 7 13 19 29 37 43 53 61 1 4 6 6 10 8 6 10 8 10 3 2 0 4 2 2 4 2 2 2 1 2 4 2 0 2 2 0 0 0 1 2 2 2 2 0 2 0 0 0 1 0 0 0 2 2 2 0 0 4 1 0 0 2 0 0 2 0 4 2
Programs
-
Maple
A358692T := proc(n,k) option remember ; if n = 1 then if k = 1 then 2; else ithprime(2*k-2) ; end if; else abs(procname(n-1,k+1)-procname(n-1,k)) ; end if; end proc: A358692 := proc(n) A358692T(n+1,1) ; end proc: seq(A358692(n),n=1..1000) ; # R. J. Mathar, Feb 01 2023
-
Mathematica
z = 230; g[t_] := Abs[Differences[t]] t = Join[{2}, Prime[2 Range[z]]] s[1] = g[t]; s[n_] := g[s[n - 1]]; Table[s[n], {n, 1, z}]; Table[First[s[n]], {n, 1, z}]
Comments