cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358692 Gilbreath transform of primes p(2*k) with 2 prefixed; see Comments.

Original entry on oeis.org

1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Nov 27 2022

Keywords

Comments

Suppose that S = (s(k)), for k >= 1, is a sequence of real numbers. For n >= 1, let g(1,n) = |s(n+1)-s(n)| and g(k,n) = |g(k-1, n+1) - g(k-1,n)| for k >= 2.
We call (g(k,n)) the Gilbreath array of S and (g(n,1)) the Gilbreath transform of S, written as G(S). If S is the sequences of primes, then the Gilbreath conjecture holds that G(S) consists exclusively of 1's. It appears that there are many S such that G(S) is eventually periodic. See A358691 for conjectured examples.

Examples

			Corner of successive absolute difference array (including initial row of primes p(2*k) with 2 prefixed):
  2  3  7  13  19  29  37  43  53  61
  1  4  6   6  10   8   6  10   8  10
  3  2  0   4   2   2   4   2   2   2
  1  2  4   2   0   2   2   0   0   0
  1  2  2   2   2   0   2   0   0   0
  1  0  0   0   2   2   2   0   0   4
  1  0  0   2   0   0   2   0   4   2
		

Crossrefs

Programs

  • Maple
    A358692T := proc(n,k)
        option remember ;
        if n = 1 then
            if k = 1 then
                2;
            else
                ithprime(2*k-2) ;
            end if;
        else
            abs(procname(n-1,k+1)-procname(n-1,k)) ;
        end if;
    end proc:
    A358692 := proc(n)
        A358692T(n+1,1) ;
    end proc:
    seq(A358692(n),n=1..1000) ; # R. J. Mathar, Feb 01 2023
  • Mathematica
    z = 230; g[t_] := Abs[Differences[t]]
    t = Join[{2}, Prime[2 Range[z]]]
    s[1] = g[t]; s[n_] := g[s[n - 1]];
    Table[s[n], {n, 1, z}];
    Table[First[s[n]], {n, 1, z}]