A358710 Triangle read by rows. Number T(n, k) of partitions of the multiset [1, 1, 2, 2, ..., n, n] into k nonempty submultisets, for 1 <= k <= 2n.
1, 1, 1, 1, 4, 3, 1, 1, 13, 26, 19, 6, 1, 1, 40, 183, 259, 163, 55, 10, 1, 1, 121, 1190, 3115, 3373, 1896, 620, 125, 15, 1, 1, 364, 7443, 34891, 62240, 54774, 27610, 8706, 1795, 245, 21, 1, 1, 1093, 45626, 374059, 1072316, 1435175, 1063570, 485850, 146363, 30261, 4361, 434, 28, 1
Offset: 0
Examples
The triangular array starts: [0] 1; [1] 1, 1; [2] 1, 4, 3, 1; [3] 1, 13, 26, 19, 6, 1; [4] 1, 40, 183, 259, 163, 55, 10, 1; [5] 1, 121, 1190, 3115, 3373, 1896, 620, 125, 15, 1; [6] 1, 364, 7443, 34891, 62240, 54774, 27610, 8706, 1795, 245, 21, 1;
References
- F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.
Links
- Sidney Cadot, Table of n, a(n) for n = 0..420 (terms 1..420 from Marko Riedel)
- Marko Riedel et al., Number of ways to partition a multiset into k non-empty multisets, Mathematics Stack Exchange.
- Marko Riedel, Maple code for sequence by plain enumeration, the Polya Enumeration Theorem, and Power Group Enumeration.
Comments