A358721 Triangle read by rows. Number T(n, k) of partitions of the multiset [1, 1, 1, 2, 2, 2, ..., n, n, n] into k nonempty submultisets, for 1 <= k <= 3n.
1, 1, 1, 1, 1, 7, 11, 8, 3, 1, 1, 31, 139, 219, 175, 86, 28, 6, 1, 1, 127, 1547, 5321, 8004, 6687, 3579, 1329, 359, 71, 10, 1, 1, 511, 16171, 118605, 333887, 472784, 398771, 223700, 89640, 26853, 6171, 1100, 150, 15, 1, 1, 2047, 164651, 2511653, 13045458, 31207637, 41429946, 34621129, 19882236, 8342411, 2668319, 669446, 134075, 21591, 2785, 281, 21, 1
Offset: 0
Examples
The triangular array starts: [0]: 1, [1]: 1, 1, 1; [2]: 1, 7, 11, 8, 3, 1; [3]: 1, 31, 139, 219, 175, 86, 28, 6, 1; [4]: 1, 127, 1547, 5321, 8004, 6687, 3579, 1329, 359, 71, 10, 1;
References
- F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.
Links
- Marko Riedel et al., Number of ways to partition a multiset into k non-empty multisets, Mathematics Stack Exchange.
- Marko Riedel, Maple code for sequence by plain enumeration, the Polya Enumeration Theorem, and Power Group Enumeration
Comments