cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358725 Matula-Goebel numbers of rooted trees with a greater number of internal (non-leaf) vertices than edge-height.

Original entry on oeis.org

9, 15, 18, 21, 23, 25, 27, 30, 33, 35, 36, 39, 42, 45, 46, 47, 49, 50, 51, 54, 55, 57, 60, 61, 63, 65, 66, 69, 70, 72, 73, 75, 77, 78, 81, 83, 84, 85, 87, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 105, 108, 110, 111, 113, 114, 115, 117, 119, 120, 121
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2022

Keywords

Comments

Edge-height (A109082) is the number of edges in the longest path from root to leaf.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The terms together with their corresponding trees begin:
   9: ((o)(o))
  15: ((o)((o)))
  18: (o(o)(o))
  21: ((o)(oo))
  23: (((o)(o)))
  25: (((o))((o)))
  27: ((o)(o)(o))
  30: (o(o)((o)))
  33: ((o)(((o))))
  35: (((o))(oo))
  36: (oo(o)(o))
  39: ((o)(o(o)))
  42: (o(o)(oo))
  45: ((o)(o)((o)))
  46: (o((o)(o)))
  47: (((o)((o))))
  49: ((oo)(oo))
  50: (o((o))((o)))
		

Crossrefs

Complement of A209638 (the case of equality).
These trees are counted by A316321.
Positions of positive terms in A358724.
The case of equality for node-height is A358576.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936
A055277 counts rooted trees by nodes and leaves, ordered A001263.
Differences: A358580, A358724, A358726, A358729.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Count[MGTree[#],[_],{0,Infinity}]>Depth[MGTree[#]]-2&]

Formula

A342507(a(n)) > A109082(a(n)).