A358729 Difference between the number of nodes and the node-height of the rooted tree with Matula-Goebel number n.
0, 0, 0, 1, 0, 1, 1, 2, 2, 1, 0, 2, 1, 2, 2, 3, 1, 3, 2, 2, 3, 1, 2, 3, 3, 2, 4, 3, 1, 3, 0, 4, 2, 2, 3, 4, 2, 3, 3, 3, 1, 4, 2, 2, 4, 3, 2, 4, 4, 4, 3, 3, 3, 5, 3, 4, 4, 2, 1, 4, 3, 1, 5, 5, 4, 3, 2, 3, 4, 4, 2, 5, 3, 3, 5, 4, 3, 4, 1, 4, 6, 2, 2, 5, 4, 3, 3, 3, 3, 5, 4, 4, 2, 3, 4, 5, 3, 5, 4, 5, 2, 4, 4, 4, 5, 4, 3, 6
Offset: 1
Keywords
Examples
The tree (oo(oo(o))) with Matula-Goebel number 148 has 8 nodes and node-height 4, so a(148) = 4.
Links
Crossrefs
Programs
-
Mathematica
MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[Count[MGTree[n],_,{0,Infinity}]-(Depth[MGTree[n]]-1),{n,100}]
-
PARI
A061775(n) = if(1==n, 1, if(isprime(n), 1+A061775(primepi(n)), {my(pfs,t,i); pfs=factor(n); pfs[,1]=apply(t->A061775(t),pfs[,1]); (1-bigomega(n)) + sum(i=1, omega(n), pfs[i,1]*pfs[i,2])})); A358552(n) = { my(v=factor(n)[, 1], d=0); while(#v, d++; v=fold(setunion, apply(p->factor(primepi(p))[, 1]~, v))); (1+d); }; \\ (after program given in A109082 by Kevin Ryde, Sep 21 2020) A358729(n) = (A061775(n)-A358552(n)); \\ Antti Karttunen, Oct 23 2023
Formula
Extensions
Data section extended up to a(108) by Antti Karttunen, Oct 23 2023
Comments