cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358742 First of three consecutive primes p,q,r such that p^3 + q^3 - r^3 is prime.

Original entry on oeis.org

13, 29, 89, 97, 127, 137, 151, 163, 199, 223, 241, 277, 313, 349, 367, 389, 419, 431, 457, 463, 521, 577, 613, 691, 823, 827, 829, 859, 877, 883, 911, 953, 971, 1049, 1087, 1097, 1129, 1151, 1163, 1217, 1409, 1489, 1499, 1579, 1699, 1723, 1867, 1879, 1993, 2089, 2111, 2141, 2293, 2339, 2399, 2411
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Nov 29 2022

Keywords

Comments

Note: for x >= 3275, there is a prime between x and x(1 + 1/(2 log^2 x)) < 1.01x (Dusart 1998). Together with finite checking this shows that for p > 19, p^3 + q^3 - r^3 > 0. - Charles R Greathouse IV, Nov 29 2022

Examples

			a(3) = 89 is a term because 89, 97, 101 are consecutive primes and 89^3 + 97^3 - 101^3 = 587341 is prime.
		

Crossrefs

Programs

  • Maple
    R:= NULL: count:= 0: q:= 2: r:= 3:
    while count < 100 do
      p:= q; q:= r; r:=nextprime(r);
      if isprime(p^3+q^3-r^3) then count:= count+1; R:= R,p; fi;
    od:
    R;
  • Mathematica
    Select[Partition[Prime[Range[360]], 3, 1], (s = #[[1]]^3 + #[[2]]^3 - #[[3]]^3) > 0 && PrimeQ[s] &][[;; , 1]] (* Amiram Eldar, Nov 29 2022 *)
  • PARI
    a358742(upto) = {my(p1=2, p2=3); forprime(p3=5, upto, if (isprime (p1^3+p2^3-p3^3), print1(p1,", ")); p1=p2; p2=p3)};
    a358742(2500) \\ Hugo Pfoertner, Nov 29 2022
  • Python
    from itertools import islice
    from sympy import isprime, nextprime
    def agen():
        p, q, r = 2, 3, 5
        while True:
            if isprime(p**3 + q**3 - r**3): yield p
            p, q, r = q, r, nextprime(r)
    print(list(islice(agen(), 56))) # Michael S. Branicky, Nov 29 2022