cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358789 Decimal expansion of Sum_{p prime, p>=3} (-1)^((p-1)/2)*log(p)/p, negated.

Original entry on oeis.org

5, 4, 5, 6, 8, 1, 2, 7, 2, 7, 9, 5, 1, 2, 7, 9, 0, 1, 4, 8, 9, 5, 3, 2, 3, 8, 3, 3, 8, 0, 0, 4, 0, 3, 8, 3, 4, 7, 5, 2, 5, 2, 8, 0, 5, 4, 1, 4, 2, 7, 4, 4, 6, 5, 4, 0, 7, 5, 9, 8, 6, 6, 3, 9, 2, 8, 8, 7, 3, 6, 5, 3, 1, 4, 8, 7, 2, 7, 2, 6, 4, 0, 9, 6, 2, 8, 7, 8, 6, 2, 1, 5, 1, 4, 1, 6, 1, 2, 3, 2, 3, 8, 8, 5, 7, 9, 2, 6, 6, 6, 6, 2, 1, 9, 0
Offset: 0

Views

Author

Artur Jasinski, Jan 03 2023

Keywords

Comments

Sum_{p prime} log(p)/p is divergent.

Examples

			-0.54568127279512790148953238338...
		

Crossrefs

Programs

  • Mathematica
    alfa[s_]:= 1/(1 + 1/2^s) * DirichletBeta[s] * Zeta[s] / Zeta[2*s]; beta[s_]:= (1 - 1/2^s) * Zeta[s] / DirichletBeta[s]; Do[Print[N[-1/2*Sum[MoebiusMu[2*n + 1]/(2*n + 1) * Limit[D[Log[alfa[(2*n + 1)*s]/beta[(2*n + 1)*s]], s], s -> 1], {n, 0, m}], 120]], {m, 20, 200, 20}] (* Vaclav Kotesovec, Jan 25 2023 *)

Formula

Limit_{N->oo} ((Sum_{p<=N prime == 3 (mod 4)} log(p)/p) - (Sum_{p<=N prime == 1 (mod 4)} log(p)/p)).