A358836 Number of multiset partitions of integer partitions of n with all distinct block sizes.
1, 1, 2, 4, 8, 15, 28, 51, 92, 164, 289, 504, 871, 1493, 2539, 4290, 7201, 12017, 19939, 32911, 54044, 88330, 143709, 232817, 375640, 603755, 966816, 1542776, 2453536, 3889338, 6146126, 9683279, 15211881, 23830271, 37230720, 58015116, 90174847, 139820368, 216286593
Offset: 0
Keywords
Examples
The a(1) = 1 through a(5) = 15 multiset partitions: {1} {2} {3} {4} {5} {1,1} {1,2} {1,3} {1,4} {1,1,1} {2,2} {2,3} {1},{1,1} {1,1,2} {1,1,3} {1,1,1,1} {1,2,2} {1},{1,2} {1,1,1,2} {2},{1,1} {1},{1,3} {1},{1,1,1} {1},{2,2} {2},{1,2} {3},{1,1} {1,1,1,1,1} {1},{1,1,2} {2},{1,1,1} {1},{1,1,1,1} {1,1},{1,1,1} From _Gus Wiseman_, Aug 21 2024: (Start) The a(0) = 1 through a(5) = 15 compositions whose leaders of maximal weakly decreasing runs are strictly increasing: () (1) (2) (3) (4) (5) (11) (12) (13) (14) (21) (22) (23) (111) (31) (32) (112) (41) (121) (113) (211) (122) (1111) (131) (221) (311) (1112) (1121) (1211) (2111) (11111) (End)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Gus Wiseman, Sequences counting and ranking compositions by their leaders (for six types of runs).
Crossrefs
The version for set partitions is A007837.
For sums instead of sizes we have A271619.
For constant instead of distinct sizes we have A319066.
These multiset partitions are ranked by A326533.
For odd instead of distinct sizes we have A356932.
The version for twice-partitions is A358830.
The case of distinct sums also is A358832.
A001970 counts multiset partitions of integer partitions.
A011782 counts compositions.
A335456 counts patterns matched by compositions.
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; Table[Length[Select[Join@@mps/@IntegerPartitions[n],UnsameQ@@Length/@#&]],{n,0,10}] (* second program *) Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Less@@First/@Split[#,GreaterEqual]&]],{n,0,15}] (* Gus Wiseman, Aug 21 2024 *)
-
PARI
P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))} seq(n) = {my(g=P(n,y)); Vec(prod(k=1, n, 1 + polcoef(g, k, y) + O(x*x^n)))} \\ Andrew Howroyd, Dec 31 2022
Formula
G.f.: Product_{k>=1} (1 + [y^k]P(x,y)) where P(x,y) = 1/Product_{k>=1} (1 - y*x^k). - Andrew Howroyd, Dec 31 2022
Extensions
Terms a(11) and beyond from Andrew Howroyd, Dec 31 2022
Comments