cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358837 Number of odd-length multiset partitions of integer partitions of n.

Original entry on oeis.org

0, 1, 2, 4, 7, 14, 28, 54, 106, 208, 399, 757, 1424, 2642, 4860, 8851, 15991, 28673, 51095, 90454, 159306, 279067, 486598, 844514, 1459625, 2512227, 4307409, 7357347, 12522304, 21238683, 35903463, 60497684, 101625958, 170202949, 284238857, 473356564, 786196353
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2022

Keywords

Examples

			The a(1) = 1 through a(5) = 14 multiset partitions:
  {{1}}  {{2}}    {{3}}          {{4}}            {{5}}
         {{1,1}}  {{1,2}}        {{1,3}}          {{1,4}}
                  {{1,1,1}}      {{2,2}}          {{2,3}}
                  {{1},{1},{1}}  {{1,1,2}}        {{1,1,3}}
                                 {{1,1,1,1}}      {{1,2,2}}
                                 {{1},{1},{2}}    {{1,1,1,2}}
                                 {{1},{1},{1,1}}  {{1,1,1,1,1}}
                                                  {{1},{1},{3}}
                                                  {{1},{2},{2}}
                                                  {{1},{1},{1,2}}
                                                  {{1},{2},{1,1}}
                                                  {{1},{1},{1,1,1}}
                                                  {{1},{1,1},{1,1}}
                                                  {{1},{1},{1},{1},{1}}
		

Crossrefs

The version for set partitions is A024429.
These multiset partitions are ranked by A026424.
The version for partitions is A027193.
The version for twice-partitions is A358824.
A001970 counts multiset partitions of integer partitions.
A063834 counts twice-partitions, strict A296122.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[Join@@mps/@Reverse/@IntegerPartitions[n],OddQ[Length[#]]&]],{n,0,10}]
  • PARI
    P(v,y) = {1/prod(k=1, #v, (1 - y*x^k + O(x*x^#v))^v[k])}
    seq(n) = {my(v=vector(n, k, numbpart(k))); (Vec(P(v,1)) - Vec(P(v,-1)))/2} \\ Andrew Howroyd, Dec 31 2022

Formula

G.f.: ((1/Product_{k>=1} (1-x^k)^A000041(k)) - (1/Product_{k>=1} (1+x^k)^A000041(k))) / 2. - Andrew Howroyd, Dec 31 2022

Extensions

Terms a(11) and beyond from Andrew Howroyd, Dec 31 2022