cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A358859 a(n) is the smallest n-gonal number divisible by exactly n n-gonal numbers.

Original entry on oeis.org

6, 36, 210, 4560, 6426, 326040, 4232250, 1969110, 296676380, 4798080, 166289760, 73765692000, 712750500, 50561280, 33944067893736, 2139168754800, 4292572951800, 1414764341760, 72461756727360, 180975331456920, 1870768457500800, 5498331930000, 153698278734000
Offset: 3

Views

Author

Ilya Gutkovskiy, Dec 03 2022

Keywords

Comments

The corresponding indices of n-gonal numbers are 3, 6, 12, 48, 51, 330, 1100, 702, ...

Examples

			a(5) = 210, because 210 is a pentagonal number that has 5 pentagonal divisors {1, 5, 35, 70, 210} and this is the smallest such number.
		

Crossrefs

Programs

  • PARI
    a(n) = if(n<3, return()); for(k=1, oo, my(t=(k*(n*k - n - 2*k + 4))\2); if(sumdiv(t, d, ispolygonal(d, n)) == n, return(t))); \\ Daniel Suteu, Dec 04 2022

Extensions

a(11)-a(25) from Daniel Suteu, Dec 04 2022

A358860 a(n) is the smallest n-gonal pyramidal number divisible by exactly n n-gonal pyramidal numbers.

Original entry on oeis.org

56, 140, 4200, 331800, 611520, 8385930, 1071856800, 41086892000, 78540000, 38102655397426620, 59089382788800, 22241349900, 2326493030400, 7052419469195100, 886638404171520
Offset: 3

Views

Author

Ilya Gutkovskiy, Dec 03 2022

Keywords

Comments

The corresponding indices of n-gonal pyramidal numbers are 6, 7, 20, 79, 90, 203, ...

Examples

			a(4) = 140, because 140 is a square pyramidal number that has 4 square pyramidal divisors {1, 5, 14, 140} and this is the smallest such number.
		

Crossrefs

Programs

  • PARI
    pyramidal(k,r)=(k*(k+1)*((r-2)*k + (5-r)))\6;
    ispyramidal(n, r) = pyramidal(sqrtnint(6*n\(r-2) + sqrtnint(n, 3), 3), r) == n;
    a(n) = if(n<3, return()); for(k=1, oo, my(t=pyramidal(k,n)); if(sumdiv(t, d, ispyramidal(d, n)) == n, return(t))); \\ Daniel Suteu, Dec 06 2022

Extensions

a(9)-a(17) from Daniel Suteu, Dec 06 2022

A359231 a(n) is the smallest centered triangular number divisible by exactly n centered triangular numbers.

Original entry on oeis.org

1, 4, 64, 5860, 460, 74260, 14260, 1221760, 5567104, 103360, 20120860, 169096960, 1211757760, 31286787760, 31498960, 114183284260, 1553569960, 33186496960, 446613160960, 43581101074960, 274644405760, 64262632960, 121634429663260, 5786547945760
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 22 2022

Keywords

Comments

a(25) > 10^15. a(30) = 281149511296960. - Jon E. Schoenfield, Dec 25 2022

Examples

			a(5) = 460, because 460 is a centered triangular number that has 5 centered triangular divisors {1, 4, 10, 46, 460} and this is the smallest such number.
		

Crossrefs

Programs

  • Magma
    // Note: the program below finds all terms through a(22) except for
    //  a(20) = 43581101074960, which would be reached at k = 5390183.
    a := [ 0 : n in [ 1 .. 22 ] ];
    for k in [ 0 .. 550000 ] do
       c := 3*((k*(k - 1)) div 2) + 1;
       D := Divisors(c);
       n := 0;
       for d in D do
          if d mod 3 eq 1 then
             if IsSquare(((d - 1) div 3)*8 + 1) then
                n +:= 1;
             end if;
          end if;
       end for;
       if a[n] eq 0 then
          a[n] := c;
       end if;
    end for;
    a; // Jon E. Schoenfield, Dec 25 2022

Extensions

a(8)-a(24) from Jon E. Schoenfield, Dec 25 2022

A359232 a(n) is the smallest centered square number divisible by exactly n centered square numbers.

Original entry on oeis.org

1, 5, 25, 925, 1625, 1105, 47125, 350285, 493025, 3572465, 47074105, 13818025, 4109345825, 171921425, 294346585, 130334225125, 190608050165, 2687125303525, 2406144489125, 5821530534625, 49723952067725, 1500939251825, 665571884367325, 8362509238504525, 1344402738869125
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 22 2022

Keywords

Comments

From Jon E. Schoenfield, Dec 24 2022: (Start)
For all n > 22, a(n) > 5*10^14.
For all n in 10..22, the prime factors of a(n) include 5, 13, and 17. Every index k such that 5*13*17=1105 divides the k-th centered square number satisfies k == { 23, 231, 418, 431, 673, 686, 873, 1081 } (mod 1105), so a search for upper bounds for larger terms can be facilitated by testing only such indices k.
Some known upper bounds: a(23) <= 665571884367325, a(24) <= 8362509238504525, a(25) <= 1344402738869125, a(26) <= 49165090920807485, a(27) <= 4384711086003625, a(30) <= 13148945184367525, a(33) <= 179899779754020625. (End)

Examples

			a(5) = 1625, because 1625 is a centered square number that has 5 centered square divisors {1, 5, 13, 25, 1625} and this is the smallest such number.
		

Crossrefs

Programs

  • Magma
    a := [ 0 : n in [ 1 .. 17 ] ];
    for k in [ 0 .. 310000 ] do
       c := 2*k*(k+1)+1;
       D := Divisors(c);
       n := 0;
       for d in D do
          if IsSquare(2*d - 1) then
             n +:= 1;
          end if;
       end for;
       if a[n] eq 0 then
          a[n] := c;
       end if;
    end for;
    a; // Jon E. Schoenfield, Dec 24 2022
    
  • PARI
    a(n) = for(k=0, oo, my(t=2*k*(k+1)+1); if(sumdiv(t, d, issquare(2*d-1)) == n, return(t))); \\ Daniel Suteu, Dec 31 2022

Extensions

a(10)-a(22) from Jon E. Schoenfield, Dec 24 2022
a(23)-a(25) confirmed by Daniel Suteu, Dec 31 2022
Showing 1-4 of 4 results.