cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A358931 a(n) is the smallest n-gonal pyramidal number with binary weight n.

Original entry on oeis.org

35, 30, 405, 95, 6860, 765, 28855, 7923, 96760, 380091, 259064, 915915, 3845501, 1436415, 32471830, 11992255, 62904941, 182171613, 266182382, 670936891, 939382515, 2533347310, 30530860911, 1876688877, 16972115903, 201845686175, 529756691451, 409027868651, 2713039388125
Offset: 3

Views

Author

Ilya Gutkovskiy, Dec 06 2022

Keywords

Examples

			405 is the smallest pentagonal pyramidal number with binary weight 5 (405_10 = 110010101_2), so a(5) = 405.
		

Crossrefs

Programs

  • Mathematica
    p[n_, k_] := k*(k + 1)*((n - 2)*k + 5 - n)/6; a[n_] := Module[{k = 1, pk}, While[DigitCount[pk = p[n, k], 2, 1] != n, k++]; pk]; Array[a, 30, 3] (* Amiram Eldar, Dec 09 2022 *)

A358930 a(n) is the smallest n-gonal number with binary weight n.

Original entry on oeis.org

21, 169, 117, 190, 1404, 9976, 3961, 11935, 19966, 113401, 98155, 208879, 261501, 3338221, 916475, 3100671, 9943039, 31457140, 50322871, 100523871, 264240373, 2113871829, 2012739435, 532673535, 7415513007, 33017544153, 17112759966, 50983861215, 59039022015
Offset: 3

Views

Author

Ilya Gutkovskiy, Dec 06 2022

Keywords

Examples

			117 is the smallest pentagonal number with binary weight 5 (117_10 = 1110101_2), so a(5) = 117.
		

Crossrefs

Programs

  • Mathematica
    p[n_, k_] := (n - 2)*k*(k - 1)/2 + k; a[n_] := Module[{k = 1, pk}, While[DigitCount[pk = p[n, k], 2, 1] != n, k++]; pk]; Array[a, 25, 3] (* Amiram Eldar, Dec 09 2022 *)

A359315 a(n) is the smallest centered triangular number with binary weight n.

Original entry on oeis.org

1, 10, 19, 46, 31, 235, 631, 1786, 1999, 7669, 7039, 12286, 16381, 180094, 114679, 949231, 2086831, 2883574, 4175839, 12480511, 50329585, 62898151, 132638719, 234618814, 771743710, 2883510271, 4269733885, 8254119871, 17045499901, 33214168831
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 25 2022

Keywords

Examples

			235 is the smallest centered triangular number with binary weight 6 (235_10 = 11101011_2), so a(6) = 235.
		

Crossrefs

Programs

  • Mathematica
    seq[len_,nmax_] := Module[{s = Table[0,{len}], n = 1, c = 0, bw, ct}, While[c < len && n < nmax, bw = DigitCount[ct = 3*n*(n-1)/2 + 1, 2, 1]; If[bw <= len && s[[bw]] == 0, c++; s[[bw]] = ct]; n++]; s]; seq[30, 10^6] (* Amiram Eldar, Dec 26 2022 *)

A359316 a(n) is the smallest centered square number with binary weight n.

Original entry on oeis.org

1, 5, 13, 85, 61, 221, 761, 1013, 2813, 12013, 23545, 54781, 16381, 196565, 425965, 770041, 3137513, 7663613, 13629421, 20962813, 63946741, 121602013, 192805885, 499122013, 989724541, 2411720701, 6435110905, 17162301181, 29929502461, 63753420281
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 25 2022

Keywords

Examples

			221 is the smallest centered square number with binary weight 6 (221_10 = 11011101_2), so a(6) = 221.
		

Crossrefs

Programs

  • Mathematica
    seq[len_,nmax_] := Module[{s = Table[0,{len}], n = 0, c = 0, bw, cs}, While[c < len && n < nmax, bw = DigitCount[cs = 2*n*(n+1) + 1, 2, 1]; If[bw <= len && s[[bw]] == 0, c++; s[[bw]] = cs]; n++]; s]; seq[30, 10^6] (* Amiram Eldar, Dec 26 2022 *)
Showing 1-4 of 4 results.