A358933 Number of tilings of a 5 X n rectangle using n pentominoes of shapes N, U, Z.
1, 0, 0, 0, 2, 0, 2, 2, 4, 2, 10, 8, 14, 18, 36, 34, 66, 88, 136, 170, 292, 382, 578, 818, 1244, 1692, 2576, 3676, 5400, 7654, 11412, 16284, 23852, 34448, 50396, 72472, 106046, 153556, 223458, 323430, 471644, 683046, 993958, 1442138, 2097830, 3042314, 4424880
Offset: 0
Examples
a(7) = 2: ._____________. ._____________. | | ._. | ._. | | ._. | ._. | | | |_| |_|_| |_| |_| |_|_| |_| | |_. |___. |_. | | ._| .___| ._| | |_| | |_| | | | | |_| | |_| | |_____|_____|_| |_|_____|_____| . .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000
- Wikipedia, Pentomino
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 5, 2, 10, -4, -7, -35, -26, -34, 13, 43, 94, 115, 51, 30, -124, -99, -276, -52, -131, 182, 128, 298, 189, 71, -30, -118, -118, -96, -56, -8).
Formula
G.f.: (x-1)*(x^2 +x +1)*(4*x^26 +28*x^25 +44*x^24 +29*x^23 +x^22 -36*x^21 -49*x^20 -45*x^19 -61*x^18 +15*x^17 -7*x^16 +60*x^15 +x^14 +59*x^13 -11*x^12 +10*x^11 -37*x^10 -25*x^8 +x^7 -2*x^6 +10*x^5 +4*x^3 -1) / (8*x^32 +56*x^31 +96*x^30 +118*x^29 +118*x^28 +30*x^27 -71*x^26 -189*x^25 -298*x^24 -128*x^23 -182*x^22 +131*x^21 +52*x^20 +276*x^19 +99*x^18 +124*x^17 -30*x^16 -51*x^15 -115*x^14 -94*x^13 -43*x^12 -13*x^11 +34*x^10 +26*x^9 +35*x^8 +7*x^7 +4*x^6 -10*x^5 -2*x^4 -5*x^3 +1).