A253288 Each term a(n) satisfies four properties: 1, divisible by all prime factors of n; 2, divisible by only the prime factors of n; 3, not equal to any of the terms a(1), a(2), ... a(n-1); 4, smallest number satisfying 1-3 if A005361(n) is even, or second smallest number satisfying 1-3 if A005361(n) is odd.
1, 4, 9, 2, 25, 12, 49, 16, 3, 20, 121, 6, 169, 28, 45, 8, 289, 18, 361, 10, 63, 44, 529, 36, 5, 52, 81, 14, 841, 60, 961, 64, 99, 68, 175, 24, 1369, 76, 117, 50, 1681, 84, 1849, 22, 15, 92, 2209, 48, 7, 40, 153, 26, 2809, 72, 275, 98, 171, 116, 3481, 30, 3721, 124, 21, 32
Offset: 1
Keywords
References
- Brad Klee, Posting to Sequence Fans Mailing List, Dec 21, 2014.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Log log scatterplot of a(n), n = 1..2^20.
- Michael De Vlieger, Log log scatterplot of a(n) <= 12000, n = 1..2^10 showing primes in red, other prime powers (in A246547) in gold, squarefree composites (in A120944) in green, numbers neither squarefree nor prime power (in A120706) in blue and magenta. The terms in magenta are products of composite prime powers (in A286708).
- Michael De Vlieger, Log log scatterplot of a(n) <= 2^14, n = 1..2^14, showing a(n) such that rad(n) = 6 in red, and A358971(n) such that rad(n) = 6 in blue for comparison. This is an example of a self-inverse relation among terms a(n) in A003586.
- Michael De Vlieger, Log log scatterplot of a(n) <= 80000, n = 1..2^14, showing a(n) in tiny black points if a(n) = A358971(n), else a(n) in red, and A358971(n) in blue.
- Index entries for sequences that are permutations of the natural numbers
Programs
-
Maple
A253288div := proc(a,n) local npr,d,apr ; npr := numtheory[factorset](n) ; for d in npr do if modp(a,d) <> 0 then return false; end if; end do: apr := numtheory[factorset](a) ; if apr minus npr = {} then true; else false; end if; end proc: A253288 := proc(n) option remember; local a,i,prev,act,ev ; if n =1 then 1; else act := 1 ; if type(A005361(n),'even') then ev := true; else ev := false; end if; for a from 1 do prev := false; for i from 1 to n-1 do if procname(i) = a then prev := true; break; end if; end do: if not prev then if A253288div(a,n) then if ev or act > 1 then return a; else act := act+1 ; end if; end if; end if; end do: end if; end proc: seq(A253288(n),n=1..80) ; # R. J. Mathar, Jan 22 2015
-
Mathematica
nn = 1000; c[] = False; q[] = 1; f[n_] := f[n] = Map[Times @@ # &, Transpose@ FactorInteger[n]]; a[1] = 1; c[1] = True; u = 2; Do[Which[PrimeQ[n], k = n^2, PrimeQ@ Sqrt[n], k = Sqrt[n], SquareFreeQ[n], k = First@ f[n]; m = q[k]; While[Nand[! c[k m], k m != n, Divisible[k, First@ f[m]]], m++]; While[Nor[c[q[k] k], Divisible[k, First@ f[q[k]]]], q[k]++]; k *= m, True, t = 0; Set[{k, s}, {First[#], 1 + Boole@ OddQ@ Last[#]} &[f[n]]]; m = q[k]; Until[t == s, If[m > q[k], m++]; While[Nand[! c[k m], Divisible[k, First@f[m]]], m++]; t++]; If[s == 1, While[Nor[c[q[k] k], Divisible[k, First@ f[q[k]]]], q[k]++]]; k *= m]; Set[{a[n], c[k]}, {k, True}]; If[k == u, While[c[u], u++]], {n, 2, nn}]; Array[a, nn] (* Michael De Vlieger, Dec 10 2022 *)
Extensions
Terms beyond 361 from R. J. Mathar, Jan 22 2015
Comments