cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A363423 G.f. satisfies A(x) = exp( Sum_{k>=1} A(3*x^k) * x^k/k ).

Original entry on oeis.org

1, 1, 4, 40, 1126, 92440, 22559276, 16468584194, 36033333480881, 236450784546518006, 4654297351684653345788, 274836259327539399144691019, 48686693681325683653963188907344, 25874153864215746591981599665978198380
Offset: 0

Views

Author

Seiichi Manyama, Jun 01 2023

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, subst(A, x, 3*x^k)*x^k/k)+x*O(x^n))); Vec(A);

Formula

A(x) = Sum_{k>=0} a(k) * x^k = 1/Product_{k>=0} (1-x^(k+1))^(3^k * a(k)).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} d * 3^(d-1) * a(d-1) ) * a(n-k).

A359186 a(n) = Sum_{d|n} d * 4^(d-1).

Original entry on oeis.org

1, 9, 49, 265, 1281, 6201, 28673, 131337, 589873, 2622729, 11534337, 50338105, 218103809, 939552777, 4026533169, 17180000521, 73014444033, 309238241337, 1305670057985, 5497560761865, 23089744212017, 96757034778633, 404620279021569, 1688849910733113
Offset: 1

Views

Author

Seiichi Manyama, Dec 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 4^(#-1)*# &]; Array[a, 24] (* Amiram Eldar, Aug 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d*4^(d-1));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-4*x^k)^2))

Formula

G.f.: Sum_{k>=1} x^k/(1 - 4 * x^k)^2.
Showing 1-2 of 2 results.