A359029 Integers m such that A006218(m+1)/(m+1) < A006218(m)/m.
6, 10, 12, 16, 18, 22, 24, 28, 30, 36, 40, 42, 45, 46, 48, 50, 52, 54, 56, 57, 58, 60, 61, 64, 66, 68, 70, 72, 73, 76, 78, 81, 82, 84, 85, 86, 88, 90, 92, 93, 94, 96, 100, 102, 105, 106, 108, 110, 112, 114, 117, 118, 120, 121, 122, 124, 126, 128, 130, 132, 133, 136
Offset: 1
Keywords
Examples
f(7) = (d(1)+d(2)+d(3)+d(4)+d(5)+d(6)+d(7)) / 7 = (1+2+2+3+2+4+2) / 7 = 16/7 < f(6) = (d(1)+d(2)+d(3)+d(4)+d(5)+d(6)) / 6 = (1+2+2+3+2+4) / 6 = 14/6 = 7/3, so 6 is a term.
Links
- 47th International Mathematical Olympiad, Slovenia, 2006, Problem N3, page 57, Shortlisted problems with solutions.
- Index to sequences related to Olympiads.
Programs
-
Maple
with(numtheory): for n from 1 to 150 do m:= (1/(n+1))*sum(tau(k),k=1..n+1) - (1/n)*sum(tau(k),k=1..n); if m<0 then print(n); else fi; od:
-
Mathematica
With[{m = 140}, Position[Differences[Accumulate[DivisorSigma[0, Range[m]]]/Range[m]], ?(# < 0 &)] // Flatten] (* _Amiram Eldar, Dec 18 2022 *)
-
PARI
f(n) = sum(k=1, n, n\k); \\ A006218 isok(m) = f(m+1)/(m+1) < f(m)/m; \\ Michel Marcus, Dec 19 2022
Comments