cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359083 Numbers k such that A246600(k) = A000005(k) and A000005(k) sets a new record.

Original entry on oeis.org

1, 3, 15, 63, 255, 891, 4095, 262143, 1048575, 16777215, 68719476735
Offset: 1

Views

Author

Amiram Eldar, Dec 15 2022

Keywords

Comments

Numbers k with a record number of divisors, such that for all the divisors d of k the bitwise OR of k and d is equal to k (or equivalently, the bitwise AND of k and d is equal to d).
All the terms are odd since all the terms of A359080 are odd.
The corresponding numbers of divisors are 1, 2, 4, 6, 8, 10, 24, 32, 48, 96, 512, ... .
a(12) > 3*10^11, if it exists.

Crossrefs

Subsequence of A359080.

Programs

  • Mathematica
    s[n_] := DivisorSum[n, 1 &, BitAnd[n, #] == # &]; seq={}; dm = 0; Do[d = DivisorSigma[0, n]; If[d > dm && d == s[n], dm = d; AppendTo[seq, n]], {n, 1, 2*10^7}]; seq
  • PARI
    lista(nmax) = {my(list = List(), ndmax = 0, d, s); for(n = 1, nmax, nd = numdiv(n); if(nd > ndmax && sumdiv(n, d, bitand(d, n)==d) == nd, ndmax = nd; listput(list, n))); Vec(list)};